Observations of the stratorotational instability in rotating concentric cylinders

نویسندگان

  • Ruy Ibanez
  • Harry L. Swinney
  • Bruce Rodenborn
  • RUY IBANEZ
  • HARRY L. SWINNEY
چکیده

We study the stability of density stratified flow between corotating vertical cylinders with rotation rates o < i and radius ratio ri/ro = 0.877, where subscripts o and i refer to the outer and inner cylinders. Just as in stellar and planetary accretion disks, the flow has rotation, anticyclonic shear, and a stabilizing density gradient parallel to the rotation axis. The primary instability of the laminar state leads not to axisymmetric Taylor vortex flow but to a nonaxisymmetric stratorotational instability (SRI). The present work extends the range of Reynolds numbers and buoyancy frequencies [N = √(−g/ρ)(∂ρ/∂z)] examined in previous experiments. We present the first experimental results for the axial wavelength λ of the instability as a function of the internal Froude number, Fr = i/N ; λ increases by nearly an order of magnitude over the range of Fr examined. For small outer cylinder Reynolds number, the SRI occurs for inner inner Reynolds number larger than for the axisymmetric Taylor vortex flow (i.e., the SRI is more stable). For somewhat larger outer Reynolds numbers the SRI occurs for smaller inner Reynolds numbers than Taylor vortex flow and even below the Rayleigh stability line for an inviscid fluid. Shalybkov and Rüdiger [Astron. Astrophys. 438, 411 (2005)] proposed that the laminar state of a stably stratified rotating shear flow should be stable for o/ i > ri/ro, but we find that this stability criterion is violated for N sufficiently large. At large Reynolds number the primary instability is not the SRI but a previously unreported nonperiodic state that mixes the fluid.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of Mixed Convection of Nanofluid in a Concentric Annulus with Rotating Inner Cylinder

In this work, the steady and laminar mixed convection of nanofluid in horizontal concentric annulus withrotating inner cylinder is investigated numerically. The inner and outer cylinders are kept at constanttemperature Ti and To respectively, where Ti>To. The annular space is filled with Alumina-water nanofluid.The governing equations with the corresponded boundary conditions in the polar coord...

متن کامل

Entropy generation analysis of non-newtonian fluid in rotational flow

The entropy generation analysis of non-Newtonian fluid in rotational flow between two concentric cylinders is examined when the outer cylinder is fixed and the inner cylinder is revolved with a constant angular speed. The viscosity of non-Newtonian fluid is considered at the same time interdependent on temperature and shear rate. The Nahme law and Carreau equation are used to modeling dependenc...

متن کامل

Magnetohydrodynamic Flow in Horizontal Concentric Cylinders

This article presents the exact solutions of the velocity and temperature fields for a steady fully developed magnetohydrodynamic flow of a viscous incompressible and electrically conducting fluid between two horizontal concentric cylinders. Our study focuses on the influence of the Hartmann number, Brinkman number, Péclet number and inner radius on the fluid temperature field, entropy generati...

متن کامل

Forced Convection Heat Transfer of Giesekus Viscoelastic Fluid in Concentric Annulus with both Cylinders Rotation

A theoretical solution is presented for the forced convection heat transfer of a viscoelastic fluid obeying the Giesekus constitutive equation in a concentric annulus under steady state, laminar, and purely tangential flow. A relative rotational motion exists between the inner and the outer cylinders, which induces the flow. A constant temperature was set in both cylinders, in this study. The f...

متن کامل

Exchange of Stabilities in Couette Flow between Cylinders with Navier-slip Conditions

Viscous Couette flow is derived for flow between two infinitely long concentric rotating cylinders with Navier slip on both. Its axisymmetric linear stability is studied within a regime that would be hydrodynamically stable according to Rayleigh’s criterion: opposing gradients of angular velocity and specific angular momentum, based on the rotation rates and radii of the cylinders. Stability co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016