Novel precipitated zirconia-based DGT technique for high-resolution imaging of oxyanions in waters and sediments.
نویسندگان
چکیده
Water-sediment exchange is a fundamental component of oxyanion cycling in the environment. Yet, many of the (im)mobilization processes overlay complex spatial and temporal redox regimes that occur within millimeters of the interface. Only a few methods exist that can reliably capture these porewater fluxes, with the most popular being high-resolution diffusive gradients in thin films (HR-DGT). However, functionality of HR-DGT is restricted by the availability of suitable analyte binding agents within the sampler, which must be simple to cast and homogeneously distributed in the binding layer, exhibit adequate sorption capacities, be resistive to chemical change, and possess a very fine particle size (≤10 μm). A novel binding layer was synthesized to meet these requirements by in situ precipitation of zirconia into a precast hydrogel. The particle diameter≤0.2 μm of zirconia in this precipitated gel was uniform and at least 50-times smaller than the conventional molding approach. Further, this gel had superior binding and stability characteristics compared with the commonly used ferrihydrite HR-DGT technique and could be easily fabricated as an ultrathin gel (60 μm) for simultaneous oxygen imaging in conjunction with planar-optodes. Chemical imaging of anion and oxygen fluxes using the new sampler were evaluated on Lake Taihu sediments.
منابع مشابه
In situ, High-Resolution Measurement of Dissolved Sulfide Using Diffusive Gradients in Thin Films with Computer-Imaging Densitometry.
The technique of diffusive gradients in thin films (DGT) has been developed for the measurement of dissolved sulfide. Sulfide species from the sampled waters diffuse through a polyacrylamide hydrogel and then react with pale yellow AgI((s)), incorporated at the surface of a second gel, to form black Ag(2)S((s)). The accumulated sulfide can be measured with a conventional purge-and-trap method f...
متن کاملDGT-induced copper flux predicts bioaccumulation and toxicity to bivalves in sediments with varying properties.
Many regulatory frameworks for sediment quality assessment include consideration of contaminant bioavailability. However, the "snap-shots" of metal bioavailability provided by analyses of porewaters or acid-volatile sulfide-simultaneously extractable metal (AVS-SEM) relationships do not always contribute sufficient information. The use of inappropriate or inadequate information for assessing me...
متن کاملMetal Fluxes from Porewaters and Labile Sediment Phases for Predicting Metal Exposure and Bioaccumulation in Benthic Invertebrates.
The use of diffusive gradients in thin films (DGT) for predicting metal bioavailability was investigated by exposing the bivalve Tellina deltoidalis to an identical series of metal-contaminated sediments deployed simultaneously in the field and laboratory. To understand the differences in metal exposure occurring between laboratory- and field-based bioassays, we investigated changes in metal fl...
متن کاملDiffusive gradients in thin films technique provide robust prediction of metal bioavailability and toxicity in estuarine sediments.
Many sediment quality assessment frameworks incorporate contaminant bioavailability as a critical factor regulating toxicity in aquatic ecosystems. However, current approaches do not always adequately predict metal bioavailability to organisms living in the oxidized sediment surface layers. The deployment of the diffusive gradients in thin films (DGT) probes in sediments allows labile metals pr...
متن کاملHigh-Resolution Profiles of Dissolved Reactive Phosphorus in the Porewaters of Lake Sediments Assessed by DGT Technique
The technique of DGT (diffusive gradients in thin films) was applied to obtain high-resolution vertical profiles of dissolved reactive phosphorus (DRP) in sediment porewater of Lake Chaohu, a shallow eutrophication lake. Three kinds of DGT probes (with three thicknesses of diffusive gel: 0.38 mm, 0.78 mm and 1.18 mm) measured vertical concentration and induced flux from solid to solution phase ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental science & technology
دوره 49 6 شماره
صفحات -
تاریخ انتشار 2015