Gesture Salience as a Hidden Variable for Coreference Resolution and Keyframe Extraction
نویسندگان
چکیده
Gesture is a non-verbal modality that can contribute crucial information to the understanding of natural language. But not all gestures are informative, and non-communicative hand motions may confuse natural language processing (NLP) and impede learning. People have little difficulty ignoring irrelevant hand movements and focusing on meaningful gestures, suggesting that an automatic system could also be trained to perform this task. However, the informativeness of a gesture is context-dependent and labeling enough data to cover all cases would be expensive. We present conditional modality fusion, a conditional hidden-variable model that learns to predict which gestures are salient for coreference resolution, the task of determining whether two noun phrases refer to the same semantic entity. Moreover, our approach uses only coreference annotations, and not annotations of gesture salience itself. We show that gesture features improve performance on coreference resolution, and that by attending only to gestures that are salient, our method achieves further significant gains. In addition, we show that the model of gesture salience learned in the context of coreference accords with human intuition, by demonstrating that gestures judged to be salient by our model can be used successfully to create multimedia keyframe summaries of video. These summaries are similar to those created by human raters, and significantly outperform summaries produced by baselines from the literature.
منابع مشابه
Turning Lectures into Comic Books Using Linguistically Salient Gestures
Creating video recordings of events such as lectures or meetings is increasingly inexpensive and easy. However, reviewing the content of such video may be time-consuming and difficult. Our goal is to produce a “comic book” summary, in which a transcript is augmented with keyframes that disambiguate and clarify accompanying text. Unlike most previous keyframe extraction systems which rely primar...
متن کاملConditional Modality Fusion for Coreference Resolution
Non-verbal modalities such as gesture can improve processing of spontaneous spoken language. For example, similar hand gestures tend to predict semantic similarity, so features that quantify gestural similarity can improve semantic tasks such as coreference resolution. However, not all hand movements are informative gestures; psychological research has shown that speakers are more likely to ges...
متن کاملCorpus based coreference resolution for Farsi text
"Coreference resolution" or "finding all expressions that refer to the same entity" in a text, is one of the important requirements in natural language processing. Two words are coreference when both refer to a single entity in the text or the real world. So the main task of coreference resolution systems is to identify terms that refer to a unique entity. A coreference resolution tool could be...
متن کاملCorefrence resolution with deep learning in the Persian Labnguage
Coreference resolution is an advanced issue in natural language processing. Nowadays, due to the extension of social networks, TV channels, news agencies, the Internet, etc. in human life, reading all the contents, analyzing them, and finding a relation between them require time and cost. In the present era, text analysis is performed using various natural language processing techniques, one ...
متن کاملHeuristic-based Korean Coreference Resolution for Information Extraction
The information extraction is to delimit in advance, as part of the specification of the task, the semantic range of the output and to filter information from large volumes of texts. The most representative word of the document is composed of named entities and pronouns. Therefore, it is important to resolve coreference in order to extract the meaningful information in information extraction. C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Artif. Intell. Res.
دوره 31 شماره
صفحات -
تاریخ انتشار 2008