Failure Detection , Isolation and Mitigation for a
نویسندگان
چکیده
Future unmanned space missions will require increased redundancy to failure. One such mission is the Mars Sample Return, intended to return a sample of Martian soil, rock and atmosphere to Earth for greater study. A key element of the Mars Sample Return mission is the Mars Ascent Vehicle, which is designed to carry the sample container from the surface into Mars orbit, where the sample will be transferred to the Earth return vehicle. The Mars Ascent Vehicle is currently proposed as a two-stage solid fuel vehicle, which is ideal for surviving the long interplanetary journey and environmental extremes of the Martian surface. This thesis details real time failure detection, isolation and mitigation algorithms for use with a six degree of freedom solid fuel reaction control system, which commonly functions by burning a solid fuel gas generator and expelling gas out of valves arranged around the vehicle. Valve failures are known to occur in spacecraft reaction control systems, and without on-board, real time failure identification and mitigation, the Mars Ascent Vehicle could fail to place the sample container in the proper orbit. The two failure modes which are considered here are valves firing continuously, an on failure, or a valve not firing when commanded, an off failure. The detection and isolation algorithm relies on comparing the expected with the actual change in vehicle angular and linear rates in order to determine the disturbance acceleration that has been applied to the vehicle. For an on failure, the mitigation algorithm works by commanding on the jet which directly opposes the failed jet, and for an off failure, the failed jet is simply removed from the available jets to be commanded. The algorithms detailed here provide increased redundancy to failure and greater robustness without the need for additional dedicated detection hardware and at minimal computing load. These algorithms could also be adapted to other space vehicles and numerous other applications. Thesis Supervisor: John Leonard Title: Professor of Mechanical and Ocean Engineering Technical Supervisor: Edward Bergmann Title: Principal Member of the Technical Staff, Charles Stark Draper Laboratory
منابع مشابه
Deliberative Reasoning in Software Health Management
Rising software complexity in aerospace systems makes them very difficult to analyze and prepare for all possible fault scenarios at design-time. Therefore, classical run-time fault-tolerance techniques, such as self-checking pairs and triple modular redundancy are used. However, several recent incidents have made it clear that existing software fault tolerance techniques alone are not sufficie...
متن کاملA collusion mitigation scheme for reputation systems
Reputation management systems are in wide-spread use to regulate collaborations in cooperative systems. Collusion is one of the most destructive malicious behaviors in which colluders seek to affect a reputation management system in an unfair manner. Many reputation systems are vulnerable to collusion, and some model-specific mitigation methods are proposed to combat collusion. Detection of col...
متن کاملYaw Rate Control and Actuator Fault Detection and Isolation for a Four Wheel Independent Drive Electric Vehicle
In this paper, a new actuator fault detection and isolation method for a four wheel independent drive electric vehicle is proposed. Also, a controller based on sliding mode control method is proposed for lateral stability of the vehicle. The proposed control method is designed in three high, medium and low levels. At the high-level, the vehicle desired dynamics such as longitudinal speed refere...
متن کاملFormal analysis of SEU mitigation for early dependability and performability analysis of FPGA-based space applications
SRAM-based FPGAs are increasingly popular in the aerospace industry due to their field programmability and low cost. However, they suffer from cosmic radiation induced Single Event Upsets (SEUs). In safety-critical applications, the dependability of the design is a prime concern since failures may have catastrophic consequences. An early analysis of the relationship between dependability metric...
متن کاملIntegrating Planning, Execution and Diagnosis to Enable Autonomous Mission Operations
NASA’s Advanced Exploration Systems Autonomous Mission Operations (AMO) project conducted an empirical investigation of the impact of time delay on today’s mission operations, and of the effect of processes and mission support tools designed to mitigate time-delay related impacts. Mission operation scenarios were designed for NASA’s Deep Space Habitat (DSH), an analog spacecraft habitat, coveri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012