Feature Extraction by Non-Parametric Mutual Information Maximization

نویسنده

  • Kari Torkkola
چکیده

We present a method for learning discriminative feature transforms using as criterion the mutual information between class labels and transformed features. Instead of a commonly used mutual information measure based on Kullback-Leibler divergence, we use a quadratic divergence measure, which allows us to make an efficient non-parametric implementation and requires no prior assumptions about class densities. In addition to linear transforms, we also discuss nonlinear transforms that are implemented as radial basis function networks. Extensions to reduce the computational complexity are also presented, and a comparison to greedy feature selection is made.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised feature extraction for tensor objects based on maximization of mutual information

Several supervised feature extraction methods for tensor objects have been proposed recently, with applications in recognition of objects, faces and handwritten digits. However, the existing methods usually use only second order statistics of the data, typically through calculation of the withinand between-class scatters. Here we propose a method for supervised feature extraction for tensor obj...

متن کامل

Comparison of Parametric and Non-parametric EEG Feature Extraction Methods in Detection of Pediatric Migraine without Aura

Background: Migraine headache without aura is the most common type of migraine especially among pediatric patients. It has always been a great challenge of migraine diagnosis using quantitative electroencephalography measurements through feature classification. It has been proven that different feature extraction and classification methods vary in terms of performance regarding detection and di...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

On the relation between discriminant analysis and mutual information for supervised linear feature extraction

This paper provides a unifying view of three discriminant linear feature extraction methods: Linear Discriminant Analysis, Heteroscedastic Discriminant Analysis and Maximization of Mutual Information. We propose a model-independent reformulation of the criteria related to these three methods that stresses their similarities and elucidates their differences. Based on assumptions for the probabil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2003