Predictive active set selection methods for Gaussian processes

نویسندگان

  • Ricardo Henao
  • Ole Winther
چکیده

We propose an active set selection framework for Gaussian process classification for cases when the dataset is large enough to render its inference prohibitive. Our scheme consists of a two step alternating procedure of active set update rules and hyperparameter optimization based upon marginal likelihood maximization. The active set update rules rely on the ability of the predictive distributions of a Gaussian process classifier to estimate the relative contribution of a datapoint when being either included or removed from the model. This means that we can use it to include points with potentially high impact to the classifier decision process while removing those that are less relevant. We introduce two active set rules based on different criteria, the first one prefers a model with interpretable active set parameters whereas the second puts computational complexity first, thus a model with active set parameters that directly control its complexity. We also provide both theoretical and empirical support for our active set selection strategy being a good approximation of a full Gaussian process classifier. Our extensive experiments show that our approach can compete with state-of-the-art classification techniques with reasonable time complexity. Source code publicly available at http://cogsys.imm.dtu.dk/passgp.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model Predictive Control of Distributed Energy Resources with Predictive Set-Points for Grid-Connected Operation

This paper proposes an MPC - based (model predictive control) scheme to control active and reactive powers of DERs (distributed energy resources) in a grid - connected mode (either through a bus with its associated loads as a PCC (point of common coupling) or an MG (micro - grid)). DER may be a DG (distributed generation) or an ESS (energy storage system). In the proposed scheme, the set - poin...

متن کامل

Negative Selection Based Data Classification with Flexible Boundaries

One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...

متن کامل

Student-t Processes as Alternatives to Gaussian Processes

We investigate the Student-t process as an alternative to the Gaussian process as a nonparametric prior over functions. We derive closed form expressions for the marginal likelihood and predictive distribution of a Student-t process, by integrating away an inverse Wishart process prior over the covariance kernel of a Gaussian process model. We show surprising equivalences between different hier...

متن کامل

Classification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest

Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...

متن کامل

Controlling Nonlinear Processes, using Laguerre Functions Based Adaptive Model Predictive Control (AMPC) Algorithm

Laguerre function has many advantages such as good approximation capability for different systems, low computational complexity and the facility of on-line parameter identification. Therefore, it is widely adopted for complex industrial process control. In this work, Laguerre function based adaptive model predictive control algorithm (AMPC) was implemented to control continuous stirred tank rea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 80  شماره 

صفحات  -

تاریخ انتشار 2012