Synchronization of Viral Lifecycle Length to Antiviral Drug Dosage Schedules and the Emergence of "Cryptic Resistance''

نویسنده

  • Mark C. Freeman
چکیده

Viral infections, such as HIV, are often treated with orally administered antiviral medications that are dosed at particular intervals, leading to periodic drug levels and hence periodic inhibition of viral replication. These drugs generally bind to viral proteins and inhibit particular steps in the viral lifecycle, and resistance often evolves due to point mutations in the virus that prevent the drug from binding its target. However, it has been proposed (Wahl & Nowak, Proc Roy Soc B, 2000) that a completely different “cryptic” mechanism for resistance could exist: the virus population may evolve towards synchronizing its lifecycle with the pattern of drug treatment. If the lifecycle of the virus is a multiple of the dosing interval, it is possible that over time the bulk of the virus population will replicate during trough concentrations of the drug. In this thesis, we use stochastic mathematical models of viral dynamics to demonstrate that cryptic resistance could plausibly provide a powerful fitness advantage to a wide variety of viral strains whose expected lifecycle times are slightly less than the expected time between doses of an antiviral drug, allowing them to survive drug regimes that would otherwise drive infected cell populations to extinction. This in turn suggests that continuously-administered antiviral drug treatments may be significantly more effective than periodically-administered treatments in combatting viral infections.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Anti-Influenza Agents: Targeting the Virus Entry and Genome Transcription

Introduction: The emergence and spread of the pandemic H1N1 influenza virus in 2009 indicates a limitation in the strategy to control the infection, despite a long-established vaccination programme and approved antivirals. Production the proper vaccine against influenza is difficult due to the genetic recombination of virus in the event of pandemic and co-circulation of drug-resistance variants...

متن کامل

Life cycle synchronization is a viral drug resistance mechanism

Viral infections are one of the major causes of death worldwide, with HIV infection alone resulting in over 1.2 million casualties per year. Antiviral drugs are now being administered for a variety of viral infections, including HIV, hepatitis B and C, and influenza. These therapies target a specific phase of the virus's life cycle, yet their ultimate success depends on a variety of factors, su...

متن کامل

تغییرات ژنتیکی ویروس و فرار از سامانه ایمنی، چالش‌های پیش‌رو علیه آنفلوآنزا: مقاله مروری

The spread of influenza viruses in multiple bird and mammalian species is a worldwide serious threat to human and animal populations' health and raise major concern for ongoing pandemic in humans. Direct transmission of the avian viruses which have sialic acid specific receptors similar to human influenza viruses are a warning to the emergence of a new mutant strain that is likely to share mole...

متن کامل

Antiviral Activity of Arnebia Euchroma and Amniotic Membrane against HSV-1, Rotavirus, and Influenza Virus

Background and Aims: Currently, there are antiviral chemicals used to treat viral infections accompanied by limitations such as high levels of toxicity and adverse effects in humans, the emergence of drug-resistant viral strains, low numbers, and limited diversity. Therefore, it is necessary to evaluate new photochemical to obtain new therapeutic methods. The present study was conducted to eval...

متن کامل

Molecular evaluation of M2 protein of Iranian avian influenza viruses of H9N2 subtype in order to find mutations of adamantane drug resistance

Background: The H9N2 subtype of influenza A viruses is considered to be widespread in poultry industry. Adamantane is a group of antiviral agents which is effective both in prevention and treatment of influenza A virus infections. These drugs inhibit M2 protein ion channel which has role on viral replication. OBJECTIVES: The main objective of this study is to evaluate M gene of avian influenza ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015