Low-magnitude high-frequency mechanical signals accelerate and augment endochondral bone repair: preliminary evidence of efficacy.

نویسندگان

  • Allen E Goodship
  • Timothy J Lawes
  • Clinton T Rubin
چکیده

UNLABELLED Fracture healing can be enhanced by load bearing, but the specific components of the mechanical environment which can augment or accelerate the process remain unknown. The ability of low-magnitude, high-frequency mechanical signals, anabolic in bone tissue, are evaluated here for their ability to influence fracture healing. The potential for short duration (17 min), extremely low-magnitude (25 microm), high-frequency (30 Hz) interfragmentary displacements to enhance fracture healing was evaluated in a mid-diaphyseal, 3-mm osteotomy of the sheep tibia. In a pilot study of proof of concept and clinical relevance, healing in osteotomies stabilized with rigid external fixation (Control: n = 4), were compared to the healing status of osteotomies with the same stiffness of fixation, but supplemented with daily mechanical loading ( EXPERIMENTAL n = 4). These 25-microm displacements, induced by a ferroactive shape-memory alloy ("smart" material) incorporated into the body of the external fixator, were less than 1% of the 3-mm fracture gap, and less than 6% of the 0.45-mm displacement measured at the site during ambulation (p < 0.001). At 10-weeks post-op, the callus in the EXPERIMENTAL group was 3.6-fold stiffer (p < 0.03), 2.5-fold stronger (p = 0.05), and 29% larger (p < 0.01) than Controls. Bone mineral content was 52% greater in the EXPERIMENTAL group (p < 0.02), with a 2.6-fold increase in bone mineral content (BMC) in the region of the periosteum (p < 0.001). These data reinforce the critical role of mechanical factors in the enhancement of fracture healing, and emphasize that the signals need not be large to be influential and potentially clinically advantageous to the restoration of function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of high-frequency cyclical stimulation on the bone fracture-healing process: mathematical and experimental models.

Mechanical stimulation affects the evolution of healthy and fractured bone. However, the effect of applying cyclical mechanical stimuli on bone healing has not yet been fully clarified. The aim of the present study was to determine the influence of a high-frequency and low-magnitude cyclical displacement of the fractured fragments on the bone-healing process. This subject is studied experimenta...

متن کامل

Low-Magnitude, High-Frequency Vibration Fails to Accelerate Ligament Healing but Stimulates Collagen Synthesis in the Achilles Tendon

BACKGROUND Low-magnitude, high-frequency vibration accelerates fracture and wound healing and prevents disuse atrophy in musculoskeletal tissues. PURPOSE To investigate the role of low-magnitude, high-frequency vibration as a treatment to accelerate healing of an acute ligament injury and to examine gene expression in the intact Achilles tendon of the injured limb after low-magnitude, high-fr...

متن کامل

Mechanical environment alters tissue formation patterns during fracture repair.

Fracture repair has previously been shown to be sensitive to mechanical environment, yet the specific relationship between strain character, magnitude and frequency, as well as other mechanical parameters, and tissue formation is not well understood. This study aimed to correlate strain distribution within the healing fracture gap with patterns of tissue formation using a rat model of a healing...

متن کامل

The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli.

It is generally believed that mechanical signals must be large in order to be anabolic to bone tissue. Recent evidence indicates, however, that extremely low-magnitude (<10 microstrain) mechanical signals readily stimulate bone formation if induced at a high frequency. We examined the ability of extremely low-magnitude, high-frequency mechanical signals to restore anabolic bone cell activity in...

متن کامل

Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude.

There is growing evidence that extremely small mechanical signals, if applied at a sufficiently high frequency, can serve as anabolic signals to bone tissue. To determine if the responsiveness of bone to low-magnitude, high-frequency parameters is modulated by endocrine imbalance, ovariectomized (OVX) Sprague-Dawley rats were subjected to whole body vibrations (WBV, 0.15 g) at 45 Hz (n=6) or 90...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of orthopaedic research : official publication of the Orthopaedic Research Society

دوره 27 7  شماره 

صفحات  -

تاریخ انتشار 2009