Large vorticity stable solutions to the Ginzburg-Landau equations
نویسندگان
چکیده
We construct local minimizers to the Ginzburg-Landau functional of superconductivity whose number of vortices N is prescribed and blows up as the parameter ε, inverse of the Ginzburg-Landau parameter κ, tends to 0. We treat the case of N as large as |log ε|, and a wide range of intensity of external magnetic field. The vortices of our solutions arrange themselves with uniform density over a subregion of the domain bounded by a “free boundary” determined via an obstacle problem, and asymptotically tend to minimize the “Coulombian renormalized energy” W introduced in [14]. The method, inspired by [22], consists in minimizing the energy over a suitable subset of the functional space, and in showing that the minimum is achieved in the interior of the subset. It also relies heavily on refined asymptotic estimates for the Ginzburg-Landau energy obtained in [14].
منابع مشابه
Exact solutions of the 2D Ginzburg-Landau equation by the first integral method
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملLimiting Vorticities for the Ginzburg-landau Equations
We study the asymptotic limit of solutions of the Ginzburg-Landau equations in two dimensions with or without magnetic field. We first study the Ginzburg-Landau system with magnetic field describing a superconductor in an applied magnetic field, in the “London limit” of a Ginzburg-Landau parameter κ tending to ∞. We examine the asymptotic behavior of the “vorticity measures” associated to the v...
متن کاملSimplified Ginzburg-landau Models for Superconductivity Valid for High Kappa and High Fields
A formal asymptotic expansion is used to simplify the Ginzburg-Landau model of superconductivity in the limit of large values of the Ginzburg-Landau parameter and high applied magnetic field strengths. The convergence of solutions of the full Ginzburg-Landau equations to solutions of the leading order equations in the hierarchy is demonstrated for both boundary value and periodic problems. The ...
متن کاملAn Equivalence Relation for the Ginzburg-landau Equations of Superconductivity
Gauge invariance is used to establish an equivalence relation between solutions of the time-independent and time-dependent Ginzburg-Landau equations that describe the same physical state of a superconductor. The equivalence relation shows how equilibrium conngurations are obtained as large-time asymptotic limits of solutions of the time-dependent Ginzburg-Landau equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012