m at h . R A ] 1 1 Fe b 20 05 Combinatorics of H - primes in quantum matrices

نویسنده

  • Stéphane Launois
چکیده

For q ∈ C generic, we give an algorithmic construction of an ordered bijection between the set of H-primes of Oq (Mn(C)) and the sub-poset S of the (reverse) Bruhat order of the symmetric group S2n consisting of those permutations that move any integer by no more than n positions. Further, we describe the permutations that correspond via this bijection to rank t H-primes. More precisely, we establish the following result. Imagine that there is a barrier between positions n and n + 1. Then a 2n-permutation σ ∈ S corresponds to a rank t H-invariant prime ideal of Oq (Mn(C)) if and only if the number of integers that are moved by σ from the right to the left of this barrier is exactly n− t. The existence of such a bijection was conjectured by Goodearl and Lenagan. 2000 Mathematics subject classification: 16W35, 20G42, 06A07.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Associated Primes of the generalized $d$-Local Cohomology Modules

The first part of the paper is concerned to relationship between the sets of associated primes of the generalized $d$-local cohomology modules and the ordinary  generalized local cohomology  modules.  Assume that $R$ is a commutative Noetherian local ring, $M$ and $N$  are  finitely generated  $R$-modules and $d, t$ are two integers. We prove that $Ass H^t_d(M,N)=bigcup_{Iin Phi} Ass H^t_I(M,N)...

متن کامل

m at h . R A ] 2 5 Fe b 20 00 – 1 – BIRKHOFF ’ S THEOREM FOR PANSTOCHASTIC MATRICES

The panstochastic analogue of Birkhoff's Theorem on doubly-stochastic matrices is proved in the case n = 5. It is shown that this analogue fails when n > 1, n = 5.

متن کامل

ar X iv : 0 70 8 . 28 95 v 4 [ m at h . PR ] 2 1 Fe b 20 08 RANDOM MATRICES : THE CIRCULAR LAW

Let x be a complex random variable with mean zero and bounded variance σ 2. Let Nn be a random matrix of order n with entries being i.i.d. copies of x. Let λ 1 ,. .. , λn be the eigenvalues of 1 σ √ n Nn. Define the empirical spectral distribution µn of Nn by the formula µn(s, t) := 1 n #{k ≤ n|Re(λ k) ≤ s; Im(λ k) ≤ t}. The following well-known conjecture has been open since the 1950's: Circul...

متن کامل

ar X iv : h ep - t h / 05 09 05 6 v 2 8 Fe b 20 06 Solitons and soliton – antisoliton pairs of a Goldstone model in 3 + 1 dimensions

We study finite energy topologically stable static solutions to a global symmetry breaking model in 3 + 1 dimensions described by an isovector scalar field. The basic features of two different types of configurations are studied, corresponding to axially symmetric multisolitons with topological charge n, and unstable soliton–antisoliton pairs with zero topological charge.

متن کامل

ar X iv : 0 70 8 . 28 95 v 5 [ m at h . PR ] 2 9 Fe b 20 08 RANDOM MATRICES : THE CIRCULAR LAW

Let x be a complex random variable with mean zero and bounded variance σ 2. Let Nn be a random matrix of order n with entries being i.i.d. copies of x. Let λ 1 ,. .. , λn be the eigenvalues of 1 σ √ n Nn. Define the empirical spectral distribution µn of Nn by the formula µn(s, t) := 1 n #{k ≤ n|Re(λ k) ≤ s; Im(λ k) ≤ t}. The following well-known conjecture has been open since the 1950's: Circul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008