Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere.

نویسندگان

  • Huihuang Yan
  • Hidetaka Ito
  • Kan Nobuta
  • Shu Ouyang
  • Weiwei Jin
  • Shulan Tian
  • Cheng Lu
  • R C Venu
  • Guo-Liang Wang
  • Pamela J Green
  • Rod A Wing
  • C Robin Buell
  • Blake C Meyers
  • Jiming Jiang
چکیده

The centromere is the chromosomal site for assembly of the kinetochore where spindle fibers attach during cell division. In most multicellular eukaryotes, centromeres are composed of long tracts of satellite repeats that are recalcitrant to sequencing and fine-scale genetic mapping. Here, we report the genomic and genetic characterization of the complete centromere of rice (Oryza sativa) chromosome 3. Using a DNA fiber-fluorescence in situ hybridization approach, we demonstrated that the centromere of chromosome 3 (Cen3) contains approximately 441 kb of the centromeric satellite repeat CentO. Cen3 includes an approximately 1,881-kb domain associated with the centromeric histone CENH3. This CENH3-associated chromatin domain is embedded within a 3,113-kb region that lacks genetic recombination. Extensive transcription was detected within the CENH3 binding domain based on comprehensive annotation of protein-coding genes coupled with empirical measurements of mRNA levels using RT-PCR and massively parallel signature sequencing. Genes <10 kb from the CentO satellite array were expressed in several rice tissues and displayed histone modification patterns consistent with euchromatin, suggesting that rice centromeric chromatin accommodates normal gene expression. These results support the hypothesis that centromeres can evolve from gene-containing genomic regions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repression of meiotic crossing over by a centromere (CEN3) in Saccharomyces cerevisiae.

The location of the centromere of chromosome III (CEN3) of Saccharomyces cerevisiae has been altered by means of transformation. The frequency of meiotic crossing over in the CEN3-PGK1 and LEU2-CEN3 intervals increases approximately 1.5- and fourfold, respectively, when CEN3 is repositioned at HIS4. The centromere-distal HIS4-LEU2 region experiences a three- to fivefold decrease in the frequenc...

متن کامل

CSE4 genetically interacts with the Saccharomyces cerevisiae centromere DNA elements CDE I and CDE II but not CDE III. Implications for the path of the centromere dna around a cse4p variant nucleosome.

Each Saccharomyces cerevisiae chromosome contains a single centromere composed of three conserved DNA elements, CDE I, II, and III. The histone H3 variant, Cse4p, is an essential component of the S. cerevisiae centromere and is thought to replace H3 in specialized nucleosomes at the yeast centromere. To investigate the genetic interactions between Cse4p and centromere DNA, we measured the chrom...

متن کامل

Characterization and Phylogenetic Analysis of Magnaporthe spp. strains on Various Hosts in Iran

Background: Populations of Magnaporthe, the causal agent of rice blast disease, are pathotypically and genetically diverse and therefore their interaction with different rice cultivars and also antagonistic microorganisms are very complicated. Objectives: The objectives of the present study were to characterize phylogenetic relationships of 114 native  Magnaporthe strains, isolated from rice a...

متن کامل

Genetic variation and association analysis of some important traits related to grain in rice (Oryza sativa L.) germplasm

The identification of genomic loci involved in control of quantitative traits receives growing attention in plant molecular breeding. The present study was carried out to evaluate the genetic variability among 48 rice genotypes and determine the genomic regions associated with ten grain related important traits. A total number of 63 alleles were detected by 18 selected SSR markers from differen...

متن کامل

Nucleosome depletion alters the chromatin structure of Saccharomyces cerevisiae centromeres.

Saccharomyces cerevisiae centromeric DNA is packaged into a highly nuclease-resistant chromatin core of approximately 200 base pairs of DNA. The structure of the centromere in chromosome III is somewhat larger than a 160-base-pair nucleosomal core and encompasses the conserved centromere DNA elements (CDE I, II, and III). Extensive mutational analysis has revealed the sequence requirements for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 18 9  شماره 

صفحات  -

تاریخ انتشار 2006