MAC: a novel systematically multilevel cache replacement policy for PCM memory

نویسندگان

  • Shenchen Ruan
  • Haixia Wang
  • Dongsheng Wang
چکیده

The rapid development of multi-core system and increase of data-intensive application in recent years call for larger main memory. Traditional DRAM memory can increase its capacity by reducing the feature size of storage cell. Now further scaling of DRAM faces great challenge, and the frequent refresh operations of DRAM can bring a lot of energy consumption. As an emerging technology, Phase Change Memory (PCM) is promising to be used as main memory. It draws wide attention due to the advantages of low power consumption, high density and nonvolatility, while it incurs finite endurance and relatively long write latency. To handle the problem of write, optimizing the cache replacement policy to protect dirty cache block is an efficient way. In this paper, we construct a systematically multilevel structure, and based on it propose a novel cache replacement policy called MAC. MAC can effectively reduce write traffic to PCM memory with low hardware overhead. We conduct simulation experiments on GEM5 to evaluate the performances of MAC and other related works. The results show that MAC performs best in reducing the amount of writes (averagely 25.12%) without increasing the program execution time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Technique for Efficiently Managing SRAM-NVM Hybrid Cache

In this paper, we present a SRAM-PCM hybrid cache design, along with a cache replacement policy, named dead fast block (DFB) to manage the hybrid cache. This design aims to leverage the best features of both SRAM and PCM devices. Compared to a PCM-only cache, the hybrid cache with DFB policy provides superior results on all relevant evaluation metrics, viz. cache lifetime, performance and energ...

متن کامل

Reduction in Cache Memory Power Consumption based on Replacement Quantity

Today power consumption is considered to be one of the important issues. Therefore, its reduction plays a considerable role in developing systems. Previous studies have shown that approximately 50% of total power consumption is used in cache memories. There is a direct relationship between power consumption and replacement quantity made in cache. The less the number of replacements is, the less...

متن کامل

Reduction in Cache Memory Power Consumption based on Replacement Quantity

Today power consumption is considered to be one of the important issues. Therefore, its reduction plays a considerable role in developing systems. Previous studies have shown that approximately 50% of total power consumption is used in cache memories. There is a direct relationship between power consumption and replacement quantity made in cache. The less the number of replacements is, the less...

متن کامل

Energy Efficient Caching for Phase-Change Memory

Phase-Change Memory (PCM) has the potential to replace DRAM as the primary memory technology due to its non-volatility, scalability, and high energy efficiency. However, the adoption of PCM will require technological solutions to surmount some deficiencies of PCM, such as writes requiring significantly more energy and time than reads. One way to limit the number of writes is by adopting a last-...

متن کامل

DynRBLA: A High-Performance and Energy-Efficient Row Buffer Locality-Aware Caching Policy for Hybrid Memories

Phase change memory (PCM) is a promising memory technology that can offer higher memory capacity than DRAM. Unfortunately, PCM’s access latencies and energies are higher than DRAM and its endurance is lower. DRAM-PCM hybrid memory systems use DRAM as a cache to PCM, to achieve the low access latencies and energies, and high endurance of DRAM, while taking advantage of the large PCM capacity. A ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1606.03248  شماره 

صفحات  -

تاریخ انتشار 2016