Semiflows Generated by Lipschitz Perturbations of Non-densely Defined Operators I. The Theory

نویسنده

  • Horst R. Thieme
چکیده

A variety of problems in differential equations ((abstract) functional differential equations, age-dependent population models (with and without delay), evolution equations with boundary conditions e.g.) can be written as semilinear Cauchy problems with a Lipschitz perturbation of a closed linear operator which is not non-densely defined but satisfies the estimates of the Hille&Yosida theorem. A natural generalized notion of solution is provided by the integral solutions in the sense of Da Prato&Sinestrari. Ideas from ‘integrated semigroup’ theory yield a variation of constants formula which allows to transform the integral solutions of the evolution equation to solutions of an abstract semilinear Volterra integral equation. The latter can be used to find integral solutions to the Cauchy problem; moreover one finds sufficient and necessary conditions for the (forward) invariance of closed convex sets under the solution flow. The solution flow can be shown to form a dynamical system. Conditions for the regularity of the flow in time and initial state are derived. The steady states of the flow are characterized and sufficient conditions for local stability and instability are found. Finally the problems mentioned at the beginning are fitted into the general framework.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

POINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS

The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let  be a non-emp...

متن کامل

A New Topological Degree Theory for Densely Defined Quasibounded (s̃+)-perturbations of Multivalued Maximal Monotone Operators in Reflexive Banach Spaces

Let X be an infinite-dimensional real reflexive Banach space with dual space X∗ and G⊂ X open and bounded. Assume that X and X∗ are locally uniformly convex. Let T : X ⊃ D(T) → 2X be maximal monotone and C : X ⊃ D(C) → X∗ quasibounded and of type (S̃+). Assume that L ⊂ D(C), where L is a dense subspace of X , and 0 ∈ T(0). A new topological degree theory is introduced for the sum T +C. Browder’s...

متن کامل

Compact composition operators on certain analytic Lipschitz spaces

We investigate compact composition operators on ceratin Lipschitzspaces of analytic functions on the closed unit disc of the plane.Our approach also leads to some results about compositionoperators on Zygmund type spaces.

متن کامل

Linear operators of Banach spaces with range in Lipschitz algebras

In this paper, a complete description concerning linear operators of Banach spaces with range in Lipschitz algebras $lip_al(X)$ is provided. Necessary and sufficient conditions are established to ensure boundedness and (weak) compactness of these operators. Finally, a lower bound for the essential norm of such operators is obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1990