Constraints versus Priors

نویسنده

  • Philip B. Stark
چکیده

There are deep and important philosophical differences between Bayesian and frequentist approaches to quantifying uncertainty. However, some practitioners choose between these approaches primarily on the basis of convenience. For instance, the ability to incorporate parameter constraints is sometimes cited as a reason to use Bayesian methods. This reflects two misunderstandings: First, frequentist methods can indeed incorporate constraints on parameter values. Second, it ignores the crucial question of what the result of the analysis will mean. Bayesian and frequentist measures of uncertainty have similar sounding names but quite different meanings. For instance, Bayesian uncertainties typically involve expectations with respect to the posterior distribution of the parameter, holding the data fixed; frequentist uncertainties typically involve expectations with respect to the distribution of the data, holding the parameter fixed. Bayesian methods, including methods incorporating parameter constraints, require supplementing the constraints with a prior probability distribution for parameter values. This can cause frequentist and Bayesian estimates and their nominal uncertainties to differ substantially, even when the prior is “uninformative.” This paper gives simple examples where “uninformative” priors are, in fact, extremely informative, and sketches how to measure how much information the prior adds to the constraint. Bayesian methods can have good frequentist behavior, and a frequentist can use Bayesian methods and quantify the uncertainty by frequentist means—but absent a meaningful prior, Bayesian uncertainty measures lack meaning. The paper ends with brief reflections on practice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Parametric Empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction

We describe an asymmetric approach to fMRI and MEG/EEG fusion in which fMRI data are treated as empirical priors on electromagnetic sources, such that their influence depends on the MEG/EEG data, by virtue of maximizing the model evidence. This is important if the causes of the MEG/EEG signals differ from those of the fMRI signal. Furthermore, each suprathreshold fMRI cluster is treated as a se...

متن کامل

As-Rigid-As-Possible Stereo under Second Order Smoothness Priors

Imposing smoothness priors is a key idea of the top-ranked global stereo models. Recent progresses demonstrated the power of second order priors which are usually defined by either explicitly considering three-pixel neighborhoods, or implicitly using a so-called 3D-label for each pixel. In contrast to the traditional first-order priors which only prefer fronto-parallel surfaces, second-order pr...

متن کامل

Grouping with Bias

We present a graph partitioning method to integrate prior knowledge in data grouping. We consider priors represented by three types of constraints: unitary constraints on labelling of groups, partial a priori grouping information, external in uence on binary constraints. They are modelled as biases in the grouping process. We incorporate these biases into graph partitioning criteria. Computatio...

متن کامل

An empirical Bayesian solution to the source reconstruction problem in EEG.

Distributed linear solutions of the EEG source localisation problem are used routinely. In contrast to discrete dipole equivalent models, distributed linear solutions do not assume a fixed number of active sources and rest on a discretised fully 3D representation of the electrical activity of the brain. The ensuing inverse problem is underdetermined and constraints or priors are required to ens...

متن کامل

Je reys Priors versus Experienced Physicist Priors Arguments against Objective Bayesian Theory

I review the problem of the choice of the priors from the point of view of a physicist interested in measuring a physical quantity and I try to show that the reference priors often recommended for the purpose Je reys priors do not t to the problem Although it may seem sur prising it is easier for an experienced physicist to accept subjective priors or even purely subjective elicitation of proba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012