Local Shape Transfer for Image Co-segmentation
نویسندگان
چکیده
Image co-segmentation is a challenging computer vision task that aims to segment all pixels of the common objects in an image set. In real-world cases, however, the common objects often vary greatly in poses, locations and scales, making their global shapes highly inconsistent across images and difficult to be segmented. To address this problem, this paper proposes a novel co-segmentation approach that transfers patch-level local object shapes, which appear more consistently across different images. In our approach, we first employ dense correspondences to construct a patch neighbourhood system, which is refined using Locally Linear Embedding. Based on the patch relationships, an efficient algorithm is developed to jointly segment the objects in each image while transferring their local shapes across different images. Experiments show that our approach performs comparably with or better than the state-of-the-arts on iCoseg dataset [2], while achieving more than 31% relative improvements on a challenging benchmark Fashionista [31].
منابع مشابه
A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملEvaluation of methods of co-segmentation on PET/CT images of lung tumor: simulation study
Introduction: Lung cancer is one of the most common causes of cancer-related deaths worldwide. Nowadays PET/CT plays an essential role in radiotherapy planning specially for lung tumors as it provides anatomical and functional information simultaneously that is effective in accurate tumor delineation. The optimal segmentation method has not been introduced yet, however several ...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملGlobally optimal image segmentation incorporating region, shape prior and context information
Accurate image segmentation is a challenging problem in the presence of weak boundary evidence, large object deformation, and serious mutual influence between multiple objects. In this thesis, we propose novel approaches to multi-object segmentation, which incorporates region, shape and context prior information to help overcome the stated challenges. The methods are based on a 3-D graph-theore...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016