Large-scale Online Kernel Learning with Random Feature Reparameterization
نویسندگان
چکیده
A typical online kernel learning method faces two fundamental issues: the complexity in dealing with a huge number of observed data points (a.k.a the curse of kernelization) and the difficulty in learning kernel parameters, which often assumed to be fixed. Random Fourier feature is a recent and effective approach to address the former by approximating the shift-invariant kernel function via Bocher’s theorem, and allows the model to be maintained directly in the random feature space with a fixed dimension, hence the model size remains constant w.r.t. data size. We further introduce in this paper the reparameterized random feature (RRF), a random feature framework for large-scale online kernel learning to address both aforementioned challenges. Our initial intuition comes from the so-called ‘reparameterization trick’ [Kingma and Welling, 2014] to lift the source of randomness of Fourier components to another space which can be independently sampled, so that stochastic gradient of the kernel parameters can be analytically derived. We develop a well-founded underlying theory for our method, including a general way to reparameterize the kernel, and a new tighter error bound on the approximation quality. This view further inspires a direct application of stochastic gradient descent for updating our model under an online learning setting. We then conducted extensive experiments on several large-scale datasets where we demonstrate that our work achieves state-of-the-art performance in both learning efficacy and efficiency.
منابع مشابه
Large Scale Online Kernel Classification
In this work, we present a new framework for large scale online kernel classification, making kernel methods efficient and scalable for large-scale online learning tasks. Unlike the regular budget kernel online learning scheme that usually uses different strategies to bound the number of support vectors, our framework explores a functional approximation approach to approximating a kernel functi...
متن کاملLarge Scale Online Kernel Learning
In this paper, we present a new framework for large scale online kernel learning, making kernel methods efficient and scalable for large-scale online learning applications. Unlike the regular budget online kernel learning scheme that usually uses some budget maintenance strategies to bound the number of support vectors, our framework explores a completely different approach of kernel functional...
متن کاملData Dependent Kernel Approximation using Pseudo Random Fourier Features
Kernel methods are powerful and flexible approach to solve many problems in machine learning. Due to the pairwise evaluations in kernel methods, the complexity of kernel computation grows as the data size increases; thus the applicability of kernel methods is limited for large scale datasets. Random Fourier Features (RFF) has been proposed to scale the kernel method for solving large scale data...
متن کاملOnline learning of positive and negative prototypes with explanations based on kernel expansion
The issue of classification is still a topic of discussion in many current articles. Most of the models presented in the articles suffer from a lack of explanation for a reason comprehensible to humans. One way to create explainability is to separate the weights of the network into positive and negative parts based on the prototype. The positive part represents the weights of the correct class ...
متن کاملRandom Features for Large-Scale Kernel Machines
To accelerate the training of kernel machines, we propose to map the input data to a randomized low-dimensional feature space and then apply existing fast linear methods. The features are designed so that the inner products of the transformed data are approximately equal to those in the feature space of a user specified shiftinvariant kernel. We explore two sets of random features, provide conv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017