Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system.

نویسندگان

  • Adrian Mariampillai
  • Beau A Standish
  • Nigel R Munce
  • Cristina Randall
  • George Liu
  • James Y Jiang
  • Alex E Cable
  • I A Vitkin
  • Victor X D Yang
چکیده

We report a Doppler optical cardiogram gating technique for increasing the effective frame rate of Doppler optical coherence tomography (DOCT) when imaging periodic motion as found in the cardiovascular system of embryos. This was accomplished with a Thorlabs swept-source DOCT system that simultaneously acquired and displayed structural and Doppler images at 12 frames per second (fps). The gating technique allowed for ultra-high speed visualization of the blood flow pattern in the developing hearts of African clawed frog embryos (Xenopus laevis) at up to 1000 fps. In addition, four-dimensional (three spatial dimensions + temporal) Doppler imaging at 45 fps was demonstrated using this gating technique, producing detailed visualization of the complex cardiac motion and hemodynamics in a beating heart.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-time 3D and 4D Fourier domain Doppler optical coherence tomography based on dual graphics processing units

We present real-time 3D (2D cross-sectional image plus time) and 4D (3D volume plus time) phase-resolved Doppler OCT (PRDOCT) imaging based on configuration of dual graphics processing units (GPU). A GPU-accelerated phase-resolving processing algorithm was developed and implemented. We combined a structural image intensity-based thresholding mask and average window method to improve the signal-...

متن کامل

In vivo gated 4D imaging of the embryonic heart using optical coherence tomography.

We demonstrate the first in vivo gated 4D images of avian embryonic hearts by use of optical coherence tomography (OCT). We present a gated 4D dataset of an in vivo beating quail heart consisting of approximately 864,000 A-scans accumulated over multiple heartbeats. Generation of a gating trigger from a laser Doppler velocimetry (LDV) signal, collected from an outlying vitelline vessel, enabled...

متن کامل

Cardiac-Gated En Face Doppler Measurement of Retinal Blood Flow Using Swept-Source Optical Coherence Tomography at 100,000 Axial Scans per Second.

PURPOSE To develop and demonstrate a cardiac gating method for repeatable in vivo measurement of total retinal blood flow (TRBF) in humans using en face Doppler optical coherence tomography (OCT) at commercially available imaging speeds. METHODS A prototype swept-source OCT system operating at 100-kHz axial scan rate was developed and interfaced with a pulse oximeter. Using the plethysmogram ...

متن کامل

Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT

Doppler OCT provides depth-resolved information on flow in biological tissues. In this article, we demonstrate ultrahigh speed swept source/Fourier domain OCT for visualization and quantitative assessment of retinal blood flow. Using swept laser technology, the system operated in the 1050-nm wavelength range at a high axial scan rate of 200 kHz. The rapid imaging speed not only enables volumetr...

متن کامل

Live imaging of rat embryos with Doppler swept-source optical coherence tomography.

The rat has long been considered an excellent system to study mammalian embryonic cardiovascular physiology, but has lacked the extensive genetic tools available in the mouse to be able to create single gene mutations. However, the recent establishment of rat embryonic stem cell lines facilitates the generation of new models in the rat embryo to link changes in physiology with altered gene func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 15 4  شماره 

صفحات  -

تاریخ انتشار 2007