The Generalized Mayer-vietoris Principle and Spectral Sequences

نویسنده

  • LIVIU I. NICOLAESCU
چکیده

This is my spin of the some stuff from from [1]. CONTENTS 1. Double complexes 1 2. The generalized Mayer-Vietoris principle 6 3. Presheaves and sheaves 17 4. The Čech cohomology of presheaves 22 5. Spectral sequences 25 6. The Leray-Serre spectral sequence 32 References 34 1. DOUBLE COMPLEXES Suppose that R is a commutative ring with 1. A double complex of R-modules is a bigraded R-module E•,• = ⊕ p,q≥0 E equipped with two morphisms δ : E•,• 7→ E•,•+1, dh : E•,• 7→ E•+1,• satisfying the conditions dv = d 2 h = dvdh + dhdv = 0. (1.1) The above equalities show that if we define D := dv + dh, then D2 = 0. We set E = 0 if p < 0 or q < 0. The total complex associated to a double-complex (E•,•, dv, dh) is the complex (T •(E), D) where T(E) := ⊕

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mayer-vietoris Sequences in Stable Derivators

We show that stable derivators, like stable model categories, admit Mayer-Vietoris sequences arising from cocartesian squares. Along the way we characterize homotopy exact squares, and give a detection result for colimiting diagrams in derivators. As an application, we show that a derivator is stable if and only if its suspension functor is an equivalence.

متن کامل

Second Leray spectral sequence of relative hypercohomology.

A second Leray spectral sequence of relative hypercohomology is constructed. (This is skew in generality to an earlier one constructed by S. Lubkin [(1968) Ann. Math. 87, 105-255].) The Mayer-Vietoris sequence of relative hypercohomology [Lubkin, S. (1968) Ann. Math. 87, 105-255] is also generalized.

متن کامل

Critical points of distance functions and applications to geometry

8. Introduction Critical points of distance functions Toponogov's theorem; first application:a Background on finiteness theorems Homotopy Finiteness Appendix. Some volume estimates Betti numbers and rank Appendix: The generalized Mayer-Vietoris estimate Rank, curvature and diameter Ricci curvature, volume and the Laplacian Appendix. The maximum principle Ricci curvature, diameter growth and fin...

متن کامل

Multicore Homology via Mayer Vietoris

In this work we investigate the parallel computation of homology using the Mayer-Vietoris principle. We present a two stage approach for parallelizing persistence. In the first stage, we produce a cover of the input cell complex by overlapping subspaces. In the second stage, we use this cover to build the Mayer-Vietoris blowup complex, a topological space, which organizes the various subspaces ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011