Travelling Waves for the Nonlinear Schrödinger Equation with General Nonlinearity in Dimension Two
نویسندگان
چکیده
We investigate numerically the two dimensional travelling waves of the Nonlinear Schrödinger Equation for a general nonlinearity and with nonzero condition at infinity. In particular, we are interested in the energy-momentum diagrams. We propose a numerical strategy based on the variational structure of the equation. The key point is to characterize the saddle points of the action as minimizers of another functional, that allows us to use a gradient flow. We combine this approach with a continuation method in speed in order to obtain the full range of velocities. Through various examples, we show that even though the nonlinearity has the same behaviour as the well-known Gross-Pitaevskii nonlinearity, the qualitative properties of the travelling waves may be extremely different. For instance, we observe cusps, a modified (KP-I) asymptotic in the transonic limit, various multiplicity results and “one dimensional spreading” phenomena.
منابع مشابه
Stability and Instability of Travelling Solitonic Bubbles
We study the nonlinear Schrödinger equation with general nonlinearity of competing type. This equation have travelling waves with nonvanishing condition at infinity in one dimension. We give a sharp condition for the stability and instability of these solutions. This justifies the previous prediction posed in physical literature.
متن کاملAnalytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity
Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...
متن کاملStability of traveling waves of nonlinear Schrödinger equation with nonzero condition at infinity
We study the stability of traveling waves of nonlinear Schrödinger equation with nonzero condition at infinity obtained via a constrained variational approach. Two important physical models are Gross-Pitaevskii (GP) equation and cubic-quintic equation. First, under a non-degeneracy condition we prove a sharp instability criterion for 3D traveling waves of (GP), which had been conjectured in the...
متن کاملRarefaction pulses for the Nonlinear Schrödinger Equation in the transonic limit
We investigate the properties of finite energy travelling waves to the nonlinear Schrödinger equation with nonzero conditions at infinity for a wide class of nonlinearities. In space dimension two and three we prove that travelling waves converge in the transonic limit (up to rescaling) to ground states of the Kadomtsev-Petviashvili equation. Our results generalize an earlier result of F. Béthu...
متن کاملTraveling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one
We study the traveling waves of the Nonlinear Schrödinger Equation in dimension one. Through various model cases, we show that for nonlinearities having the same qualitative behaviour as the standard Gross-Pitaevkii one, the traveling waves may have rather different properties. In particular, our examples exhibit multiplicity or nonexistence results, cusps (as for the Jones-Roberts curve in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Nonlinear Science
دوره 26 شماره
صفحات -
تاریخ انتشار 2016