Runx1-mediated hematopoietic stem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer.
نویسندگان
چکیده
The transcription factor Runx1/AML1 is an important regulator of hematopoiesis and is critically required for the generation of the first definitive hematopoietic stem cells (HSCs) in the major vasculature of the mouse embryo. As a pivotal factor in HSC ontogeny, its transcriptional regulation is of high interest but is largely undefined. In this study, we used a combination of comparative genomics and chromatin analysis to identify a highly conserved 531-bp enhancer located at position + 23.5 in the first intron of the 224-kb mouse Runx1 gene. We show that this enhancer contributes to the early hematopoietic expression of Runx1. Transcription factor binding in vivo and analysis of the mutated enhancer in transient transgenic mouse embryos implicate Gata2 and Ets proteins as critical factors for its function. We also show that the SCL/Lmo2/Ldb-1 complex is recruited to the enhancer in vivo. Importantly, transplantation experiments demonstrate that the intronic Runx1 enhancer targets all definitive HSCs in the mouse embryo, suggesting that it functions as a crucial cis-regulatory element that integrates the Gata, Ets, and SCL transcriptional networks to initiate HSC generation.
منابع مشابه
The +37 kb Cebpa Enhancer Is Critical for Cebpa Myeloid Gene Expression and Contains Functional Sites that Bind SCL, GATA2, C/EBPα, PU.1, and Additional Ets Factors
The murine Cebpa gene contains an evolutionarily conserved 453 bp enhancer located at +37 kb that, together with its promoter, directs expression to myeloid progenitors and to long-term hematopoietic stem cells in transgenic mice. In human acute myeloid leukemia cases, the enhancer lacks point mutations but binds the RUNX1-ETO oncoprotein. The enhancer contains the H3K4me1 and H3K27Ac histone m...
متن کاملEstablishing the transcriptional programme for blood: the SCL stem cell enhancer is regulated by a multiprotein complex containing Ets and GATA factors.
Stem cells are a central feature of metazoan biology. Haematopoietic stem cells (HSCs) represent the best-characterized example of this phenomenon, but the molecular mechanisms responsible for their formation remain obscure. The stem cell leukaemia (SCL) gene encodes a basic helix-loop-helix (bHLH) transcription factor with an essential role in specifying HSCs. Here we have addressed the transc...
متن کاملThe paralogous hematopoietic regulators Lyl1 and Scl are coregulated by Ets and GATA factors, but Lyl1 cannot rescue the early Scl-/- phenotype.
Transcription factors are key regulators of hematopoietic stem cells (HSCs), yet the molecular mechanisms that control their expression are largely unknown. Previously, we demonstrated that expression of Scl/Tal1, a transcription factor required for the specification of HSCs, is controlled by Ets and GATA factors. Here we characterize the molecular mechanisms controlling expression of Lyl1, a p...
متن کاملThe SCL transcriptional network and BMP signaling pathway interact to regulate RUNX1 activity.
Hematopoietic stem cell (HSC) development is regulated by several signaling pathways and a number of key transcription factors, which include Scl/Tal1, Runx1, and members of the Smad family. However, it remains unclear how these various determinants interact. Using a genome-wide computational screen based on the well characterized Scl +19 HSC enhancer, we have identified a related Smad6 enhance...
متن کاملTranscriptional link between blood and bone: the stem cell leukemia gene and its +19 stem cell enhancer are active in bone cells.
Blood and vascular cells are generated during early embryogenesis from a common precursor, the hemangioblast. The stem cell leukemia gene (SCL/tal 1) encodes a basic helix-loop-helix transcription factor that is essential for the normal development of blood progenitors and blood vessels. We have previously characterized a panel of SCL enhancers including the +19 element, which directs expressio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 110 13 شماره
صفحات -
تاریخ انتشار 2007