Monocular Depth Estimation with Hierarchical Fusion of Dilated CNNs and Soft-Weighted-Sum Inference
نویسندگان
چکیده
Monocular depth estimation is a challenging task in complex compositions depicting multiple objects of diverse scales. Albeit the recent great progress thanks to the deep convolutional neural networks (CNNs), the state-of-the-art monocular depth estimation methods still fall short to handle such real-world challenging scenarios. In this paper, we propose a deep end-to-end learning framework to tackle these challenges, which learns the direct mapping from a color image to the corresponding depth map. First, we represent monocular depth estimation as a multi-category dense labeling task by contrast to the regression based formulation. In this way, we could build upon the recent progress in dense labeling such as semantic segmentation. Second, we fuse different side-outputs from our front-end dilated convolutional neural network in a hierarchical way to exploit the multi-scale depth cues for depth estimation, which is critical to achieve scale-aware depth estimation. Third, we propose to utilize soft-weighted-sum inference instead of the hard-max inference, transforming the discretized depth score to continuous depth value. Thus, we reduce the influence of quantization error and improve the robustness of our method. Extensive experiments on the NYU Depth V2 and KITTI datasets show the superiority of our method compared with current state-of-the-art methods. Furthermore, experiments on the NYU V2 dataset reveal that our model is able to learn the probability distribution of depth.
منابع مشابه
Single image depth estimation by dilated deep residual convolutional neural network and soft-weight-sum inference
This paper proposes a new residual convolutional neural network (CNN) architecture for single image depth estimation. Compared with existing deep CNN based methods, our method achieves much better results with fewer training examples and model parameters. The advantages of our method come from the usage of dilated convolution, skip connection architecture and soft-weight-sum inference. Experime...
متن کاملMonocular Depth Estimation by Learning from Heterogeneous Datasets
Depth estimation provides essential information to perform autonomous driving and driver assistance. Especially, Monocular Depth Estimation is interesting from a practical point of view, since using a single camera is cheaper than many other options and avoids the need for continuous calibration strategies as required by stereo-vision approaches. State-of-theart methods for Monocular Depth Esti...
متن کاملNew Approaches in 3D Geomechanical Earth Modeling
In this paper two new approaches for building 3D Geomechanical Earth Model (GEM) were introduced. The first method is a hybrid of geostatistical estimators, Bayesian inference, Markov chain and Monte Carlo, which is called Model Based Geostatistics (MBG). It has utilized to achieve more accurate geomechanical model and condition the model and parameters of variogram. The second approach is the ...
متن کاملSelf-Supervised Monocular Image Depth Learning and Confidence Estimation
Convolutional Neural Networks (CNNs) need large amounts of data with ground truth annotation, which is a challenging problem that has limited the development and fast deployment of CNNs for many computer vision tasks. We propose a novel framework for depth estimation from monocular images with corresponding confidence in a selfsupervised manner. A fully differential patch-based cost function is...
متن کاملMonocular Depth Estimation: Applications to Image Segmentation and Filtering
This Ph.D. dissertation addresses the problem of estimating depth ordering information from single images, a key issue in image understanding that in recent years has focused the interest of the community. Motivation behind this tendency is provided by several important applications that could beneficiate of advances in the field such as automatic object removal, image indexing, 3D scene recons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1708.02287 شماره
صفحات -
تاریخ انتشار 2017