High-Throughput 0.13-µm CMOS Lattice Reduction Core Supporting 880 Mb/s Detection
نویسندگان
چکیده
This paper presents the first silicon-proven implementation of a lattice reduction (LR) algorithm, which achieves maximum likelihood diversity. The implementation is based on a novel hardware-optimized due to the Lenstra, Lenstra, and Lovász (LLL) algorithm, which significantly reduces its complexity by replacing all the computationally intensive LLL operations (multiplication, division, and square root) with low-complexity additions and comparisons. The proposed VLSI design utilizes a pipelined architecture that produces an LR-reduced matrix set every 40 cycles, which is a 60% reduction compared to current state-of-the-art LR field-programmable gate array implementations. The 0.13-μm CMOS LR core presented in this paper achieves a clock rate of 352 MHz, and thus is capable of sustaining a throughput of 880 Mb/s for 64-QAM multipleinput–multiple-output detection with superior performance while dissipating 59.4 mW at 1.32 V supply.
منابع مشابه
A 1.1-Gb/s 115-pJ/bit Configurable MIMO Detector Using 0.13- μm CMOS Technology
This brief presents an efficient and configurable multiple-input–multiple-output (MIMO) signal detector design solution and its high-speed IC implementation. This detector can support 2 × 2/3 × 3/4 × 4 MIMO and quadratic phase-shift keying/16-state quadratic amplitude modulation (QAM)/64-state QAM modulation configurations. The detection algorithm employs an early-pruned technique that can redu...
متن کاملVLSI Implementation of Lattice Reduction for MIMO Wireless Communication Systems
Lattice-Reduction has become a popular way of improving the performance of MIMO detectors. However, developing an efficient high-throughput VLSI implementation of LR has been a major challenge in the literature. This thesis proposes a hardware-optimized version of the popular LLL algorithm that reduces its complexity by 70% and achieves a fixed runtime while maintaining ML diversity. The propos...
متن کاملA fully-integrated 12.5-Gb/s 850-nm CMOS optical receiver based on a spatially-modulated avalanche photodetector.
We present a fully integrated 12.5-Gb/s optical receiver fabricated with standard 0.13-µm complementary metal-oxide-semiconductor (CMOS) technology for 850-nm optical interconnect applications. Our integrated optical receiver includes a newly proposed CMOS-compatible spatially-modulated avalanche photodetector, which provides larger photodetection bandwidth than previously reported CMOS-compati...
متن کاملHigh Profile Video Decoder Chip
The increased resolution of Quad Full High Definition (QFHD) offers significantly enhanced visual experience. However, the corresponding huge data throughput of up to 530 Mpixels/s greatly challenges the design of real-time video decoder VLSI with the extensive requirement on both DRAM bandwidth and computational power. In this work, a lossless frame recompression technique and a partial MB reo...
متن کاملSmall and High-Speed Hardware Architectures for the 3GPP Standard Cipher KASUMI
Abstract. The KASUMI block cipher and the confidentiality (f8) and integrity (f9) algorithms using KASUMI in feed back cipher modes have been standardized by the 3GPP. We designed compact and high-speed implementations and then compared several prototypes to existing designs in ASICs and FPGAs. Making good use of the nested structure of KASUMI, a lot of function blocks are shared and reused. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. VLSI Syst.
دوره 21 شماره
صفحات -
تاریخ انتشار 2013