Evaluation of Morphological Hierarchies for Supervised Segmentation
نویسندگان
چکیده
We propose a quantitative evaluation of morphological hierarchies (quasi-flat zones, constraint connectivity, watersheds, observation scale) in a novel framework based on the marked segmentation problem. We created a set of automatically generated markers for the one object image datasets of Grabcut and Weizmann. In order to evaluate the hierarchies, we applied the same segmentation strategy by combining several parameters and markers. Our results, which shows important differences among the considered hierarchies, give clues to understand the behaviour of each method in order to choose the best one for a given application. The code and the marker datasets are available online.
منابع مشابه
Morfessor 2.0: Toolkit for statistical morphological segmentation
Morfessor is a family of probabilistic machine learning methods for finding the morphological segmentation from raw text data. Recent developments include the development of semi-supervised methods for utilizing annotated data. Morfessor 2.0 is a rewrite of the original, widely-used Morfessor 1.0 software, with well documented command-line tools and library interface. It includes new features s...
متن کاملMinimally-Supervised Morphological Segmentation using Adaptor Grammars
This paper explores the use of Adaptor Grammars, a nonparametric Bayesian modelling framework, for minimally supervised morphological segmentation. We compare three training methods: unsupervised training, semisupervised training, and a novel model selection method. In the model selection method, we train unsupervised Adaptor Grammars using an over-articulated metagrammar, then use a small labe...
متن کاملA Comparative Study on Minimally-Supervised Morphological Segmentation
This article presents a comparative study on a sub-field of morphology learning referred to as minimally-supervised morphological segmentation. In morphological segmentation, word forms are segmented into morphs, the surface forms of morphemes. In the minimally-supervised datadriven learning setting, segmentation models are learned from a small amount of manually annotated word forms and a larg...
متن کاملA Comparative Study of Minimally Supervised Morphological Segmentation
This article presents a comparative study of a subfield of morphology learning referred to as minimally supervised morphological segmentation. In morphological segmentation, word forms are segmented into morphs, the surface forms of morphemes. In the minimally supervised data-driven learning setting, segmentation models are learned from a small number of manually annotated word forms and a larg...
متن کاملPainless Semi-Supervised Morphological Segmentation using Conditional Random Fields
We discuss data-driven morphological segmentation, in which word forms are segmented into morphs, that is the surface forms of morphemes. We extend a recent segmentation approach based on conditional random fields from purely supervised to semi-supervised learning by exploiting available unsupervised segmentation techniques. We integrate the unsupervised techniques into the conditional random f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015