CoNLL-X Shared Task on Multilingual Dependency Parsing
نویسندگان
چکیده
Each year the Conference on Computational Natural Language Learning (CoNLL)1 features a shared task, in which participants train and test their systems on exactly the same data sets, in order to better compare systems. The tenth CoNLL (CoNLL-X) saw a shared task on Multilingual Dependency Parsing. In this paper, we describe how treebanks for 13 languages were converted into the same dependency format and how parsing performance was measured. We also give an overview of the parsing approaches that participants took and the results that they achieved. Finally, we try to draw general conclusions about multi-lingual parsing: What makes a particular language, treebank or annotation scheme easier or harder to parse and which phenomena are challenging for any dependency parser?
منابع مشابه
CLCL (Geneva) DINN Parser: a Neural Network Dependency Parser Ten Years Later
This paper describes the University of Geneva’s submission to the CoNLL 2017 shared task Multilingual Parsing from Raw Text to Universal Dependencies (listed as the CLCL (Geneva) entry). Our submitted parsing system is the grandchild of the first transition-based neural network dependency parser, which was the University of Geneva’s entry in the CoNLL 2007 multilingual dependency parsing shared...
متن کاملA System for Multilingual Dependency Parsing based on Bidirectional LSTM Feature Representations
In this paper, we present our multilingual dependency parser developed for the CoNLL 2017 UD Shared Task dealing with “Multilingual Parsing from Raw Text to Universal Dependencies”1. Our parser extends the monolingual BIST-parser as a multi-source multilingual trainable parser. Thanks to multilingual word embeddings and one hot encodings for languages, our system can use both monolingual and mu...
متن کاملMultilingual Dependency Parsing Using Global Features
In this paper, we describe a two-stage multilingual dependency parser used for the multilingual track of the CoNLL 2007 shared task. The system consists of two components: an unlabeled dependency parser using Gibbs sampling which can incorporate sentence-level (global) features as well as token-level (local) features, and a dependency relation labeling module based on Support Vector Machines. E...
متن کاملHybrid Multilingual Parsing with HPSG for SRL
In this paper we present our syntactic and semantic dependency parsing system submitted to both the closed and open challenges of the CoNLL 2009 Shared Task. The system extends the system of Zhang, Wang, & Uszkoreit (2008) in the multilingual direction, and achieves 76.49 average macro F1 Score on the closed joint task. Substantial improvements to the open SRL task have been observed that are a...
متن کاملInvestigating Multilingual Dependency Parsing
In this paper, we describe a system for the CoNLL-X shared task of multilingual dependency parsing. It uses a baseline Nivre’s parser (Nivre, 2003) that first identifies the parse actions and then labels the dependency arcs. These two steps are implemented as SVM classifiers using LIBSVM. Features take into account the static context as well as relations dynamically built during parsing. We exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006