Fabrication of DNA microarrays using unmodified oligonucleotide probes.
نویسندگان
چکیده
Microarrays printed on glass slides are often constructed by covalently linking oligonucleotide probes to a derivatized surface. These procedures typically require relatively expensive amine- or thiol-modified oligonucleotide probes that add considerable expense to larger arrays. We describe a system by which unmodified oligonucleotide probes are bound to either nonderivatized or epoxy-silane-derivatized glass slides. Biotinylated PCR products are heat denatured, hybridized to the arrays, and detected using an enzymatic amplification system. Unmodified probes appear to detach from the slide surface at high pH (> 10.0), suggesting that hydrogen bonding plays a significant role in probe attachment. Regardless of surface preparation, high temperature (up to 65 degrees C) and low ionic strength (deionized water) do not disturb probe attachment; hence, the fabrication method described here is suitable for a wide range of hybridization stringencies and conditions. We illustrate kinetics of room temperature hybridizations for probes attached to nonderivatized slides, and we demonstrate that unmodified probes produce hybridization signals equal to amine-modified, covalently bound probes. Our method provides a cost-effective alternative to conventional attachment strategies that is particularly suitable for genotyping PCR products with nucleic acid microarrays.
منابع مشابه
Fabrication of DNA microarrays on nanoengineered polymeric ultrathin film prepared by self-assembly of polyelectrolyte multilayers.
Microarray-based technology is in need of flexible and cost-effective chemistry for fabrication of oligonucleotide microarrays. We have developed a novel method for the fabrication of oligonucleotide microarrays with unmodified oligonucleotide probes on nanoengineered three-dimensional thin films that are deposited on glass slides by consecutive layer-to-layer adsorption of polyelectrolytes. Un...
متن کاملAn inexpensive and simple method for thermally stable immobilization of DNA on an unmodified glass surface: UV linking of poly(T)10-poly(C)10-tagged DNA probes.
Microarrays printed on glass slides are often constructed by covalently linking modified oligonucleotide probes to a derivatized surface at considerable expense. In this article, we demonstrate that 14-base oligonucleotides with a poly(T)10 - poly(C)10 tail (TC tag), but otherwise unmodified, can be linked by UV light irradiation onto a plain, unmodified glass surface. Probes immobilized onto u...
متن کاملDirect immobilization of DNA probes on non-modified plastics by UV irradiation and integration in microfluidic devices for rapid bioassay
DNA microarrays have become one of the most powerful tools in the field of genomics and medical diagnosis. Recently, there has been increased interest in combining microfluidics with microarrays since this approach offers advantages in terms of portability, reduced analysis time, low consumption of reagents, and increased system integration. Polymers are widely used for microfluidic systems, bu...
متن کاملFabrication of high quality microarrays.
Fabrication of DNA microarray demands that between ten (diagnostic microarrays) and many hundred thousands of probes (research or screening microarrays) are efficiently immobilised to a glass or plastic surface using a suitable chemistry. DNA microarray performance is measured by parameters like array geometry, spot density, spot characteristics (morphology, probe density and hybridised density...
متن کاملThermodynamics of competitive surface adsorption on DNA microarrays
Gene microarrays provide a powerful functional genomics technology which permits the expression profiling of tens of thousands of genes in parallel. The basic idea of their functioning is based on the sequence specificity of probe–target interactions combined with fluorescence detection. In reality, this straightforward principle is opposed by the complexity of the experimental system due to im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- BioTechniques
دوره 30 2 شماره
صفحات -
تاریخ انتشار 2001