Tight Bounds for the Determinisation and Complementation of Generalised Büchi Automata
نویسندگان
چکیده
Generalised Büchi automata are Büchi automata with multiple accepting sets. They form a class of automata that naturally occurs, e.g., in the translation from LTL to ω-automata. In this paper, we extend current determinisation techniques for Büchi automata to generalised Büchi automata and prove that our determinisation is optimal. We show how our optimal determinisation technique can be used as a foundation for complementation and establish that the resulting complementation is tight. Moreover, we show how this connects the optimal determinisation and complementation techniques for ordinary Büchi automata.
منابع مشابه
Tight Bounds for Complementing Parity Automata
We follow a connection between tight determinisation and complementation and establish a complementation procedure from transition-labelled parity automata to transition-labelled nondeterministic Büchi automata. We prove it to be tight up to an O(n) factor, where n is the size of the nondeterministic parity automaton. This factor does not depend on the number of priorities.
متن کاملDeterminising Parity Automata
Parity word automata and their determinisation play an important role in automata and game theory. We discuss a determinisation procedure for nondeterministic parity automata through deterministic Rabin to deterministic parity automata. We prove that the intermediate determinisation to Rabin automata is optimal. We show that the resulting determinisation to parity automata is optimal up to a sm...
متن کاملBüchi Complementation Made Tighter
The complementation problem for nondeterministic word automata has numerous applications in formal verification. In particular, the language-containment problem, to which many verification problems is reduced, involves complementation. For automata on finite words, which correspond to safety properties, complementation involves determinization. The 2 blow-up that is caused by the subset constru...
متن کاملLower Bounds for Complementation of ω-Automata via the Full Automata Technique
In this paper, we first introduce a new lower bound technique for the state complexity of transformations of automata. Namely we suggest considering the class of full automata in lower bound analysis. Then we apply such technique to the complementation of nondeterministic ωautomata and obtain several lower bound results. Particularly, we prove anΩ((0.76n)) lower bound for Büchi complementation,...
متن کاملExponential Determinization for ω-Automata with Strong-Fairness Acceptance Condition
In [Saf88] an exponential determinization procedure for Büchi automata was shown, yielding tight bounds for decision procedures of some logics ([EJ88, Saf88, SV89, KT89]). In [SV89] the complexity of determinization and complementation of ω-automata was further investigated, leaving as an open question the complexity of the determinization of a single class of ω-automata. For this class of ω-au...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012