Notch1 control of oligodendrocyte differentiation in the spinal cord
نویسندگان
چکیده
We have selectively inhibited Notch1 signaling in oligodendrocyte precursors (OPCs) using the Cre/loxP system in transgenic mice to investigate the role of Notch1 in oligodendrocyte (OL) development and differentiation. Early development of OPCs appeared normal in the spinal cord. However, at embryonic day 17.5, premature OL differentiation was observed and ectopic immature OLs were present in the gray matter. At birth, OL apoptosis was strongly increased in Notch1 mutant animals. Premature OL differentiation was also observed in the cerebrum, indicating that Notch1 is required for the correct spatial and temporal regulation of OL differentiation in various regions of the central nervous system. These findings establish a widespread function of Notch1 in the late steps of mammalian OPC development in vivo.
منابع مشابه
Decrease in Cavity Size and Oligodendrocyte Cell Death Using Neurosphere-Derived Oligodendrocyte-Like Cells in Spinal Cord Contusion Model
Background: Oligodendrocyte cell death is among the important features of spinal cord injury, which appears within 15 min and occurs intensely for 4 h after injury, in the rat spinal contusion model. Accordingly, the number of oligodendrocytes progressively reduced within 24 h after injury. Administration of oligodendrocyte-like cells (OLCs) into the lesion area is one of the approaches to coun...
متن کاملEffect of 6 weeks aerobic training on peripheral neuropathic pain and expression of NOTCH1 pathway genes in posterior spinal cord of diabetic male rats
ntrodution: Neuropathic pain is one of the most important factors affecting the quality of life of people with diabetes mellitus; regular exercises may have a role in reducing the pain associated with diabetes. The purpose of this study was the effect of six weeks aerobic training on environmental neuropathic pain and expression of the NOTCH1 pathway in the spinal cord of diabetic male rats. M...
متن کاملMicroRNA-Mediated Control of Oligodendrocyte Differentiation
MicroRNAs (miRNAs) regulate various biological processes, but evidence for miRNAs that control the differentiation program of specific neural cell types has been elusive. To determine the role of miRNAs in the formation of myelinating oligodendrocytes, we selectively deleted a miRNA-processing enzyme, Dicer1, in oligodendrocyte lineage cells. Mice lacking Dicer1 display severe myelinating defic...
متن کاملIL-17 induced NOTCH1 activation in oligodendrocyte progenitor cells enhances proliferation and inflammatory gene expression
NOTCH1 signalling contributes to defective remyelination by impairing differentiation of oligodendrocyte progenitor cells (OPCs). Here we report that IL-17 stimulation induces NOTCH1 activation in OPCs, contributing to Th17-mediated demyelinating disease. Mechanistically, IL-17R interacts with NOTCH1 via the extracellular domain, which facilitates the cleavage of NOTHC1 intracellular domain (NI...
متن کاملAstrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins.
Promotion of remyelination is an important therapeutic strategy to facilitate functional recovery after traumatic spinal cord injury (SCI). Transplantation of neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) has been used to enhance remyelination after SCI. However, the microenvironment in the injured spinal cord is inhibitory for oligodendrocyte (OL) differentiation of NSCs o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 158 شماره
صفحات -
تاریخ انتشار 2002