Airflows and turbulent flux measurements in mountainous terrain Part 2: Mesoscale effects

نویسندگان

  • Andrew A. Turnipseed
  • Dean E. Anderson
  • Sean Burns
  • Peter D. Blanken
  • Russell K. Monson
چکیده

The location of the Niwot Ridge Ameriflux site within the rocky mountains subjects it to airflows which are common in mountainous terrain. In this study, we examine the effects of some of these mesoscale features on local turbulent flux measurements; most notably, the formation of valley/mountain flows and mountain lee-side waves. The valley/mountain flows created local non-stationarities in the wind flow caused by the passage of a lee-side convergence zone (LCZ) in which upslope and downslope flows met in the vicinity of the measurement tower. During June–August, 2001, possible lee-side convergences were flagged for ∼26% of all half-hour daytime flux measurement periods. However, there was no apparent loss of flux during these periods. On some relatively stable, summer nights, turbulence (designated via σw), and scalar fluctuations (temperature and CO2, for example) exhibited periodicities that appeared congruent with passage of low frequency gravity waves (τ ∼ 20 min). Spectral peaks at 0.0008 Hz (20 min) in both vertical velocity and scalar spectra were observed and indicated that 25–50% of the total scalar covariances were accounted for by the low frequency waves. During some periods of strong westerly winds (predominantly in winter), large mountain gravity waves were observed to form. Typically, the flux tower resided within a region of downslope “shooting flow”, which created high turbulence, but had no detrimental effect on local flux measurements based on valid turbulence statistics and nearly complete energy budget closure. Periodically, we found evidence for re-circulating, rotor winds in the simultaneous time series of wind data from the Ameriflux tower site and a second meteorological site situated 8 km upslope and to the West. Only 14% of the half-hour time periods that we examined for a 4 month period in the winter of 2000–2001 indicated the possible existence of rotor winds. On average, energy budget closure was ∼20% less during periods with rotor occurrence compared to those without. Results from this study demonstrate that the potential exists for relatively rare, yet significant influences of mesoscale wind flow patterns on the local half-hour flux measurements at this site. Occurrence of these events could be detected through examination of normal turbulence statistical parameters. © 2004 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Airflows and turbulent flux measurements in mountainous terrain Part 1. Canopy and local effects

We have studied the effects of local topography and canopy structure on turbulent flux measurements at a site located in mountainous terrain within a subalpine, coniferous forest. Our primary aim was to determine whether the complex terrain of the site affects the accuracy of eddy flux measurements from a practical perspective. We observed displacement heights, roughness lengths, spectral peaks...

متن کامل

Parameterization of Nonlocal Mixing in the Marine Boundary Layer: A Study Combining Measurements and Large-Eddy

The long-range goal of this research is to improve understanding of small-scale mixing processes in the atmospheric boundary layer and to incorporate the effects of these processes in mesoscale models. Studies of the atmospheric boundary layer using large-eddy simulation (LES) have demonstrated the value of these models in describing basic turbulent processes in the atmospheric boundary layer. ...

متن کامل

High-Resolution Large-Eddy Simulations of Flow in a Steep Alpine Valley. Part I: Methodology, Verification, and Sensitivity Experiments

This paper investigates the steps necessary to achieve accurate simulations of flow over steep, mountainous terrain. Large-eddy simulations of flow in the Riviera Valley in the southern Swiss Alps are performed at horizontal resolutions as fine as 150 m using the Advanced Regional Prediction System. Comparisons are made with surface station and radiosonde measurements from the Mesoscale Alpine ...

متن کامل

Stably stratified canopy flow in complex terrain

Stably stratified canopy flow in complex terrain has been considered a difficult condition for measuring net ecosystem–atmosphere exchanges of carbon, water vapor, and energy. A long-standing advection error in eddy-flux measurements is caused by stably stratified canopy flow. Such a condition with strong thermal gradient and less turbulent air is also difficult for modeling. To understand the ...

متن کامل

THE USE OF MESOSCALE NUMERICAL MODELS TO ASSESS WIND DISTRIBUTION AND BOUNDARY -LA YER STRUCTURE IN COMPLEX TERRAIN (A Review Paper)

Mesoscale models which can be used to assess wind and turbulent structure in complex terrain are overviewed. The different types of models -diagnostic and prognostic are discussed and the significant physical processes which each can handle realistically are reviewed. Examples of specific applications of these models are presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004