A randomized algorithm for rank revealing QR factorizations and applications

نویسندگان

  • Christos Boutsidis
  • Petros Drineas
  • Michael W. Mahoney
چکیده

The basic steps of a RRQR Factorization are: (i) select columns from the input matrix A, (ii) permute them to leading positions to a new matrix Ap, (iii) compute a QR Factorization Ap = QR, (iv) reveal rank(A) from R. Since their introduction [1, 2], algorithmic trends have involved procedures for deterministically selecting columns from A [3, 4, 5]. Motivated by recent results in theoretical computer science [6, 7, 8] we present a novel algorithm for randomized column selection. Following work in [9] we illustrate our algorithm for approximation of stock market related matrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blocked rank-revealing QR factorizations: How randomized sampling can be used to avoid single-vector pivoting

Given a matrix A of size m × n, the manuscript describes a algorithm for computing a QR factorization AP = QR where P is a permutation matrix, Q is orthonormal, and R is upper triangular. The algorithm is blocked, to allow it to be implemented efficiently. The need for single vector pivoting in classical algorithms for computing QR factorizations is avoided by the use of randomized sampling to ...

متن کامل

Communication Avoiding Rank Revealing QR Factorization with Column Pivoting

In this paper we introduce CARRQR, a communication avoiding rank revealing QRfactorization with tournament pivoting. We show that CARRQR reveals the numerical rank of amatrix in an analogous way to QR factorization with column pivoting (QRCP). Although the upperbound of a quantity involved in the characterization of a rank revealing factorization is worse forCARRQR than for QRCP...

متن کامل

Solving Rank-Deficient and Ill-posed Problems Using UTV and QR Factorizations

The algorithm of Mathias and Stewart [A block QR algorithm and the singular value decomposition, Linear Algebra and Its Applications, 182:91-100, 1993] is examined as a tool for constructing regularized solutions to rank-deficient and ill-posed linear equations. The algorithm is based on a sequence of QR factorizations. If it is stopped after the first step it produces that same solution as the...

متن کامل

Comparison of Rank Revealing Algorithms Applied to Matrices with Well Defined Numerical Ranks

For matrices with a well defined numerical rank in the sense that there is a large gap in the singular value spectrum we compare three rank revealing QR algorithms and four rank revealing LU algorithms with the singular value decomposition. The fastest algorithms are those that construct LU factorizations using rook pivoting. For matrices with a sufficiently large gap in the singular values all...

متن کامل

High Resolution Methods Based On Rank Revealing Triangular Factorizations

In this paper, we propose a novel method for subspace estimation used high resolution method without eigendecomposition where the sample Cross-Spectral Matrix (CSM) is replaced by upper triangular matrix obtained from LU factorization. This novel method decreases the computational complexity. The method relies on a recently published result on Rank-Revealing LU (RRLU) factorization. Simulation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007