Supervised Nonlinear Dimensionality Reduction Based on Evolution Strategy

نویسندگان

  • Mudasser Naseer
  • Shi-Yin Qin
چکیده

Most of the classifiers suffer from the curse of dimensionality during classification of high dimensional image and non-image data. In this paper, we introduce a new supervised nonlinear dimensionality reduction (S-NLDR) algorithm called supervised dimensionality reduction based on evolution strategy (SDRES) for both image and nonimage data. The SDRES method uses the power of evolution strategy (ES) algorithm to find low dimensional embedding of high dimensional labeled data. The new algorithm makes the interclass dissimilarity larger than the intraclass dissimilarity while finding low dimensional embedding values. Simulation studies on some well-known benchmark datasets demonstrate that SDRES generally gives better results in dimensionality reduction and classification as compared to other famous S-NDLR methods such as WeightedIso, supervised S-Isomap, supervised locally linear embedding (SLLE), enhanced supervised locally linear embedding (ESLLE) and supervised local tangent space alignment (SLTSA).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت در چارچوب کاهش بعد بدون اتلاف برای شناسایی چهره

In this paper, we first proposed the supervised version of probabilistic principal component analysis mixture model. Then, we consider a learning predictive model with projection penalties, as an approach for dimensionality reduction without loss of information for face recognition. In the proposed method, first a local linear underlying manifold of data samples is obtained using the supervised...

متن کامل

Semi-supervised learning with Gaussian fields

Gaussian fields (GF) have recently received considerable attention for dimension reduction and semi-supervised classification. This paper presents two contributions. First, we show how the GF framework can be used for regression tasks on high-dimensional data. We consider an active learning strategy based on entropy minimization and a maximum likelihood model selection method. Second, we show h...

متن کامل

Dimensionality reduction based on non-parametric mutual information

In this paper we introduce a supervised linear dimensionality reduction algorithm which finds a projected input space that maximizes the mutual information between input and output values. The algorithm utilizes the recently introduced MeanNN estimator for differential entropy. We show that the estimator is an appropriate tool for the dimensionality reduction task. Next we provide a nonlinear r...

متن کامل

Supervised Dimensionality Reduction via Distance Correlation Maximization

In our work, we propose a novel formulation for supervised dimensionality reduction based on a nonlinear dependency criterion called Statistical Distance Correlation, [Székely et al., 2007]. We propose an objective which is free of distributional assumptions on regression variables and regression model assumptions. Our proposed formulation is based on learning a lowdimensional feature represent...

متن کامل

A Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters

Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013