Time Expression Analysis and Recognition Using Syntactic Token Types and General Heuristic Rules
نویسندگان
چکیده
Extracting time expressions from free text is a fundamental task for many applications. We analyze time expressions from four different datasets and find that only a small group of words are used to express time information and that the words in time expressions demonstrate similar syntactic behaviour. Based on the findings, we propose a type-based approach named SynTime1 for time expression recognition. Specifically, we define three main syntactic token types, namely time token, modifier, and numeral, to group time-related token regular expressions. On the types we design general heuristic rules to recognize time expressions. In recognition, SynTime first identifies time tokens from raw text, then searches their surroundings for modifiers and numerals to form time segments, and finally merges the time segments to time expressions. As a lightweight rule-based tagger, SynTime runs in real time, and can be easily expanded by simply adding keywords for the text from different domains and different text types. Experiments on benchmark datasets and tweets data show that SynTime outperforms state-of-the-art methods.
منابع مشابه
Automatic Identification of Bengali Noun-Noun Compounds Using Random Forest
This paper presents a supervised machine learning approach that uses a machine learning algorithm called Random Forest for recognition of Bengali noun-noun compounds as multiword expression (MWE) from Bengali corpus. Our proposed approach to MWE recognition has two steps: (1) extraction of candidate multi-word expressions using Chunk information and various heuristic rules and (2) training the ...
متن کاملDeep Lexical Segmentation and Syntactic Parsing in the Easy-First Dependency Framework
We explore the consequences of representing token segmentations as hierarchical structures (trees) for the task of Multiword Expression (MWE) recognition, in isolation or in combination with dependency parsing. We propose a novel representation of token segmentation as trees on tokens, resembling dependency trees. Given this new representation, we present and evaluate two different architecture...
متن کاملNew scheduling rules for a dynamic flexible flow line problem with sequence-dependent setup times
In the literature, the application of multi-objective dynamic scheduling problem and simple priority rules are widely studied. Although these rules are not efficient enough due to simplicity and lack of general insight, composite dispatching rules have a very suitable performance because they result from experiments. In this paper, a dynamic flexible flow line problem with sequence-dependent se...
متن کاملA Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملThe Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS
The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017