OMP-ZsGreen fluorescent protein transgenic mice for visualisation of olfactory sensory neurons in vivo and in vitro.
نویسندگان
چکیده
Research into the biology of the mammalian olfactory system would be greatly enhanced by transgenic reporter mice with cell-specific fluorescence. To this end we previously generated a mouse whose olfactory ensheathing cells (OECs) express DsRed driven by the S100ß promoter. We present here a transgenic reporter mouse whose olfactory sensory neurons express ZsGreen, driven by the olfactory marker protein (OMP) promoter. ZsGreen was very strongly expressed throughout the cytoplasm of olfactory sensory neurons labelling them in living cells and after fixation. Labelled sensory neurons were seen in all olfactory regions in the nose and fluorescent axons coursed through the lamina propria and into the main and accessory bulbs. We developed methods for culturing embryonic and postnatal olfactory sensory neurons using these mice to visualise living cells in vitro. ZsGreen was expressed along the length of axons providing exceptional detail of the growth cones. The ZsGreen fluorescence was very stable, without fading during frequent imaging. The combination of OMP-ZsGreen and S100ß-DsRed transgenic mice is ideal for developmental studies and neuron-glia assays and they can be bred with mutant mice to dissect the roles of various molecules in neurogenesis, differentiation, axon growth and targeting and other aspects of olfactory sensory neuron and glia biology.
منابع مشابه
Olfactory ensheathing cells are the main phagocytic cells that remove axon debris during early development of the olfactory system.
During development of the primary olfactory system, axon targeting is inaccurate and axons inappropriately project within the target layer or overproject into the deeper layers of the olfactory bulb. As a consequence there is considerable apoptosis of primary olfactory neurons during embryonic and postnatal development and axons of the degraded neurons need to be removed. Olfactory ensheathing ...
متن کاملSpatiotemporal Alterations in Primary Odorant Representations in Olfactory Marker Protein Knockout Mice
Olfactory marker protein (OMP) is highly and selectively expressed in primary olfactory sensory neurons (OSNs) across species, but its physiological function remains unclear. Previous studies in the olfactory epithelium suggest that it accelerates the neural response to odorants and may modulate the odorant-selectivity of OSNs. Here we used a line of gene-targeted mice that express the fluoresc...
متن کاملA long-term culture system for olfactory explants with intrinsically fluorescent cell populations.
As a prerequisite for exploring the mechanisms which lead to the formation and maintenance of the precise wiring patterns in the olfactory system, organotypic cultures of olfactory tissue from transgenic mice expressing green fluorescent protein (GFP) under control of the olfactory marker protein promotor have been established. Tissue specimen from embryonic stage 14 were explanted and kept in ...
متن کاملCa2+ Extrusion by NCX Is Compromised in Olfactory Sensory Neurons of OMP−/− Mice
BACKGROUND The role of olfactory marker protein (OMP), a hallmark of mature olfactory sensory neurons (OSNs), has been poorly understood since its discovery. The electrophysiological and behavioral phenotypes of OMP knockout mice indicated that OMP influences olfactory signal transduction. However, the mechanism by which this occurs remained unknown. PRINCIPAL FINDINGS We used intact olfactor...
متن کاملMutually exclusive glomerular innervation by two distinct types of olfactory sensory neurons revealed in transgenic zebrafish.
The olfactory epithelium of fish contains two major types of olfactory sensory neurons (OSNs) that are distinct morphologically (ciliated vs microvillous) and possibly functionally. Here, we found that these OSNs express different sets of signal transduction machineries: the ciliated OSNs express OR-type odorant receptors, cyclic nucleotide-gated channel A2 subunit, and olfactory marker protein...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuroscience methods
دوره 196 1 شماره
صفحات -
تاریخ انتشار 2011