The symmetric central configurations of the 4-body problem with masses

نویسندگان

  • Martha Alvarez-Ramírez
  • Jaume Llibre
چکیده

We characterize the planar central configurations of the 4body problem with masses m1 = m2 ̸= m3 = m4 which have an axis of symmetry. It is known that this problem has exactly two classes of convex central configurations, one with the shape of a rhombus and the other with the shape of an isosceles trapezoid. We show that this 4-body problem also has exactly two classes of concave central configurations with the shape of a kite, this proof is assisted by computer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Planar Central Configurations of Five Bodies: Euler plus Two

We study planar central configurations of the five-body problem where three of the bodies are collinear, forming an Euler central configuration of the three-body problem, and the two other bodies together with the collinear configuration are in the same plane. The problem considered here assumes certain symmetries. From the three bodies in the collinear configuration, the two bodies at the extr...

متن کامل

Central configurations of the planar coorbital satellite problem

We study the planar central configurations of the 1 + n body problem where one mass is large and the other n masses are infinitesimal and equal. We find analytically all these central configurations when 2 ≤ n ≤ 4. Numerically, first we provide evidence that when n ≥ 9 the only central configuration is the regular n–gon with the large mass in its barycenter, and second we provide also evidence ...

متن کامل

On the central configurations of the planar restricted four-body problem

This article is devoted to answering several questions about the central configurations of the planar (3 + 1)-body problem. Firstly, we study bifurcations of central configurations, proving the uniqueness of convex central configurations up to symmetry. Secondly, we settle the finiteness problem in the case of two nonzero equal masses. Lastly, we provide all the possibilities for the number of ...

متن کامل

Convex Four Body Central Configurations with Some Equal Masses

We prove that there is a unique convex non-collinear central configuration of the planar Newtonian four-body problem when two equal masses are located at opposite vertices of a quadrilateral and, at most, only one of the remaining masses is larger than the equal masses. Such central configuration posses a symmetry line and it is a kite shaped quadrilateral. We also show that there is exactly on...

متن کامل

Properties of Central Symmetric X-Form Matrices

In this paper we introduce a special form of symmetric matrices that is called central symmetric $X$-form matrix and study some properties, the inverse eigenvalue problem and inverse singular value problem for these matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 219  شماره 

صفحات  -

تاریخ انتشار 2013