Analysis of syntactic and semantic features for fine-grained event-spatial understanding in outbreak news reports

نویسندگان

  • Hutchatai Chanlekha
  • Nigel Collier
چکیده

BACKGROUND Previous studies have suggested that epidemiological reasoning needs a fine-grained modelling of events, especially their spatial and temporal attributes. While the temporal analysis of events has been intensively studied, far less attention has been paid to their spatial analysis. This article aims at filling the gap concerning automatic event-spatial attribute analysis in order to support health surveillance and epidemiological reasoning. RESULTS In this work, we propose a methodology that provides a detailed analysis on each event reported in news articles to recover the most specific locations where it occurs. Various features for recognizing spatial attributes of the events were studied and incorporated into the models which were trained by several machine learning techniques. The best performance for spatial attribute recognition is very promising; 85.9% F-score (86.75% precision/85.1% recall). CONCLUSIONS We extended our work on event-spatial attribute recognition by focusing on machine learning techniques, which are CRF, SVM, and Decision tree. Our approach avoided the costly development of an external knowledge base by employing the feature sources that can be acquired locally from the analyzed document. The results showed that the CRF model performed the best. Our study indicated that the nearest location and previous event location are the most important features for the CRF and SVM model, while the location extracted from the verb's subject is the most important to the Decision tree model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Verbs in Applied Linguistics Research Article Introductions: Semantic and syntactic analysis

This study aims to investigate the semantic and syntactic features of verbs used in the introduction section of Applied Linguistics research articles published in Iranian and international journals. A corpus of 20 research article introductions (10 from each journal) was used. The corpus was analysed for the syntactic features (tense, aspect and voice) and semantic meaning of verbs. The finding...

متن کامل

Verbs in Applied Linguistics Research Article Introductions: Semantic and syntactic analysis

This study aims to investigate the semantic and syntactic features of verbs used in the introduction section of Applied Linguistics research articles published in Iranian and international journals. A corpus of 20 research article introductions (10 from each journal) was used. The corpus was analysed for the syntactic features (tense, aspect and voice) and semantic meaning of verbs. The finding...

متن کامل

An improved joint model: POS tagging and dependency parsing

Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...

متن کامل

برچسب‌زنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه

Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...

متن کامل

OmniGraph: Rich Representation and Graph Kernel Learning

OmniGraph, a novel representation to support a range of NLP classification tasks, integrates lexical items, syntactic dependencies and frame semantic parses into graphs. Feature engineering is folded into the learning through convolution graph kernel learning to explore different extents of the graph. A high-dimensional space of features includes individual nodes to complex networks. In experim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2010