The RSC chromatin remodeling complex bears an essential fungal-specific protein module with broad functional roles.
نویسندگان
چکیده
RSC is an essential and abundant ATP-dependent chromatin remodeling complex from Saccharomyces cerevisiae. Here we show that the RSC components Rsc7/Npl6 and Rsc14/Ldb7 interact physically and/or functionally with Rsc3, Rsc30, and Htl1 to form a module important for a broad range of RSC functions. A strain lacking Rsc7 fails to properly assemble RSC, which confers sensitivity to temperature and to agents that cause DNA damage, microtubule depolymerization, or cell wall stress (likely via transcriptional misregulation). Cells lacking Rsc14 display sensitivity to cell wall stress and are deficient in the assembly of Rsc3 and Rsc30. Interestingly, certain rsc7delta and rsc14delta phenotypes are suppressed by an increased dosage of Rsc3, an essential RSC member with roles in cell wall integrity and spindle checkpoint pathways. Thus, Rsc7 and Rsc14 have different roles in the module as well as sharing physical and functional connections to Rsc3. Using a genetic array of nonessential null mutations (SGA) we identified mutations that are sick/lethal in combination with the rsc7delta mutation, which revealed connections to a surprisingly large number of chromatin remodeling complexes and cellular processes. Taken together, we define a protein module on the RSC complex with links to a broad spectrum of cellular functions.
منابع مشابه
HTL1 encodes a novel factor that interacts with the RSC chromatin remodeling complex in Saccharomyces cerevisiae.
RSC is an essential chromatin remodeling complex in Saccharomyces cerevisiae that performs central roles in transcriptional regulation and cell cycle progression. Here we identify Htl1 as a novel factor that associates with the RSC complex both physically and functionally. We isolated HTL1 through a genetic screen for mutants that displayed additive growth defects with a conditional mutation in...
متن کاملTandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14.
The coordination of chromatin remodeling with chromatin modification is a central topic in gene regulation. The yeast chromatin remodeling complex RSC bears multiple bromodomains, motifs for acetyl-lysine and histone tail interaction. Here, we identify and characterize Rsc4 and show that it bears tandem essential bromodomains. Conditional rsc4 bromodomain mutations were isolated, and were letha...
متن کاملRSC Chromatin-Remodeling Complex Is Important for Mitochondrial Function in Saccharomyces cerevisiae
RSC (Remodel the Structure of Chromatin) is an ATP-dependent chromatin remodeling complex essential for the growth of Saccharomyces cerevisiae. RSC exists as two distinct isoforms that share core subunits including the ATPase subunit Nps1/Sth1 but contain either Rsc1or Rsc2. Using the synthetic genetic array (SGA) of the non-essential null mutation method, we screened for mutations exhibiting s...
متن کاملDual tagging as an approach to isolate endogenous chromatin remodeling complexes from Saccharomyces cerevisiae.
Affinity isolation has been an essential technique for molecular studies of cellular assemblies, such as the switch/sucrose non-fermentable (SWI/SNF) family of ATP-dependent chromatin remodeling complexes. However, even biochemically pure isolates can contain heterogeneous mixtures of complexes and their components. In particular, purification strategies that rely on affinity tags fused to only...
متن کاملA Rsc3/Rsc30 zinc cluster dimer reveals novel roles for the chromatin remodeler RSC in gene expression and cell cycle control.
Chromatin remodeling complexes perform central roles in transcriptional regulation. Here, we identify Rsc3 and Rsc30 as novel components of the essential yeast remodeler RSC complex. Rsc3 and Rsc30 function requires their zinc cluster domain, a known site-specific DNA binding motif. RSC3 is essential, and rsc3 Ts- mutants display a G2/M cell cycle arrest involving the spindle assembly checkpoin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 172 2 شماره
صفحات -
تاریخ انتشار 2006