A Discrete Variational Integrator for Optimal Control Problems on SO
نویسنده
چکیده
In this paper we study a discrete variational optimal control problem for the rigid body. The cost to be minimized is the external torque applied to move the rigid body from an initial condition to a pre-specified terminal condition. Instead of discretizing the equations of motion, we use the discrete equations obtained from the discrete Lagrange–d’Alembert principle, a process that better approximates the equations of motion. Within the discrete-time setting, these two approaches are not equivalent in general. The kinematics are discretized using a natural Lie-algebraic formulation that guarantees that the flow remains on the Lie group SO(3) and its algebra so(3). We use Lagrange’s method for constrained problems in the calculus of variations to derive the discrete-time necessary conditions. We give a numerical example for a three-dimensional rigid body maneuver. A. Bloch Alexander Ziwet Collegiate Professor of Mathematics and Department Chair Department of Mathematics University of Michigan E-mail: [email protected] I. Hussein Assistant Professor Worcester Polytechnic Institute E-mail: [email protected] M. Leok Hildebrandt Research Assistant Professor Department of Mathematics University of Michigan E-mail: [email protected] A. Sanyal Postdoctoral Research Associate Mechanical and Aerospace Engineering Arizona State University E-mail: [email protected] 2 Bloch, Hussein, Leok and Sanyal
منابع مشابه
A New Optimal Solution Concept for Fuzzy Optimal Control Problems
In this paper, we propose the new concept of optimal solution for fuzzy variational problems based on the possibility and necessity measures. Inspired by the well–known embedding theorem, we can transform the fuzzy variational problem into a bi–objective variational problem. Then the optimal solutions of fuzzy variational problem can be obtained by solving its corresponding biobjective variatio...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملOptimal Attitude Control of a Rigid Body using Geometrically
An efficient and accurate computational approach is proposed for optimal attitude control of a rigid body. The problem is formulated directly as a discrete time optimization problem using a Lie group variational integrator. Discrete necessary conditions for optimality are derived, and an efficient computational approach is proposed to solve the resulting two point boundary value problem. The us...
متن کاملDiscrete Variational Optimal Control
This paper develops numerical methods for optimal control of mechanical systems in the Lagrangian setting. It extends the theory of discrete mechanics to enable the solutions of optimal control problems through the discretization of variational principles. The key point is to solve the optimal control problem as a variational integrator of a specially constructed higher-dimensional system. The ...
متن کاملOptimal Attitude Control of a Rigid Body Using Geometrically Exact Computations on So(3)
An efficient and accurate computational approach is proposed for a nonconvex optimal attitude control for a rigid body. The problem is formulated directly as a discrete time optimization problem using a Lie group variational integrator. Discrete time necessary conditions for optimality are derived, and an efficient computational approach is proposed to solve the resulting two-point boundary-val...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006