QSPR designer – a program to design and evaluate QSPR models. Case study on pKa prediction
نویسندگان
چکیده
Nowadays, a large amount of experimental and predicted data about the 3D structure of organic molecules and biomolecules is available. Advanced computational methods and high performance computers allow us to obtain large sets of descriptors that can be used to estimate physicochemical properties. It is often of interest to study the correlations between descriptors and properties using multilinear regression and to design, parameterize, and test different QSPR (Quantitative Structure Property Relationship) models. We developed a modular and easily extensible program, called QSPR Designer, which can read or calculate structural properties of atoms and bonds, employ them as QSPR descriptors, and evaluate correlations between the descriptors and the examined physicochemical property of a molecule. Furthermore, the software allows us to effectively design and parameterize QSPR models, calculate physicochemical properties via the models, test the quality of the models, and provide graphs and tables summarizing the results. The performance of the software is demonstrated by a case study on the prediction of pKa. The pKa is of fundamental relevance for chemical, biological and pharmaceutical research, because many important physicochemical properties are pKa dependent. Unfortunately, pKa is also one of the most challenging properties to calculate [1]. Atomic charges have proven very successful descriptors for the prediction of pKa[2]. Charges can be calculated using a variety of methods (HF, MP2, functionals, etc.), population analyses (Mulliken, ESP, NPA, etc.) and basis sets. Consequently, the procedure of charge calculation strongly influences their correlation with pKa [3]. Using the QSPR Designer, we have successfully designed, evaluated, and compared 75 different QSPR models for the prediction of pKa from charges. Our best model predicted the pKa for 143 phenols with a correlation coefficient 0.969, RMSE (root mean square error) 0.416 and the average pKa error 0.329.
منابع مشابه
QSPR designer – employ your own descriptors in the automated QSAR modeling process
The prediction of physical and chemical properties of molecules is a very important step in the drug discovery process. QSAR and QSPR models are strong tools for predicting these properties. The models employ descriptors and statistical approaches to provide an estimation of the desired property. An abundance of descriptors and QSAR/QSPR models were published, but the prediction of some propert...
متن کاملHow the methodology of 3D structure preparation influences the quality of QSPR models?
QSPR modelling is a very useful and popular methodology for estimating the physical and chemical properties of molecules. The inputs for QSPR models are 3D structures of molecules. Currently, the 3D structures for millions of molecules are publicly available. A large number of these 3D structures were generated by software tools for the conversion of 2D structures into 3D. Moreover, the generat...
متن کاملQSPR Analysis with Curvilinear Regression Modeling and Topological Indices
Topological indices are the real number of a molecular structure obtained via molecular graph G. Topological indices are used for QSPR, QSAR and structural design in chemistry, nanotechnology, and pharmacology. Moreover, physicochemical properties such as the boiling point, the enthalpy of vaporization, and stability can be estimated by QSAR/QSPR models. In this study, the QSPR (Quantitative St...
متن کاملA novel topological descriptor based on the expanded wiener index: Applications to QSPR/QSAR studies
In this paper, a novel topological index, named M-index, is introduced based on expanded form of the Wiener matrix. For constructing this index the atomic characteristics and the interaction of the vertices in a molecule are taken into account. The usefulness of the M-index is demonstrated by several QSPR/QSAR models for different physico-chemical properties and biological activities of a large...
متن کاملPredicting p Ka values from EEM atomic charges
: The acid dissociation constant p Ka is a very important molecular property, and there is a strong interest in the development of reliable and fast methods for p Ka prediction. We have evaluated the p Ka prediction capabilities of QSPR models based on empirical atomic charges calculated by the Electronegativity Equalization Method (EEM). Specifically, we collected 18 EEM parameter sets created...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2011