ct 2 00 2 Osserman Conjecture in dimension n 6 = 8 , 16

نویسنده

  • Y. Nikolayevsky
چکیده

Let M n be a Riemannian manifold and R its curvature tensor. For a point p ∈ M n and a unit vector X ∈ TpM n , the Jacobi operator is defined by RX = R(X, ·)X. The manifold M n is called pointwise Osserman if, for every p ∈ M n , the spectrum of the Jacobi operator does not depend of the choice of X, and is called globally Osserman if it depends neither of X, nor of p. Osserman conjectured that globally Osserman manifolds are two-point homogeneous. We prove the Osserman Conjecture for n = 8, 16, and its pointwise version for n = 2, 4, 8, 16. Partial result in the case n = 16 is also given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osserman manifolds of dimension 8

For a Riemannian manifold M n with the curvature tensor R, the Jacobi operator RX is defined by RX Y = R(X, Y)X. The manifold M n is called pointwise Osserman if, for every p ∈ M n , the eigenvalues of the Jacobi operator RX do not depend of a unit vector X ∈ TpM n , and is called globally Osserman if they do not depend of the point p either. R. Osserman conjectured that globally Osserman manif...

متن کامل

2 3 O ct 2 00 8 EXPONENTIAL ALGEBRAICITY IN EXPONENTIAL FIELDS

I give an algebraic proof that the exponential algebraic closure operator in an exponential field is always a pregeometry, and show that its dimension function satisfies a weak Schanuel property. A corollary is that there are at most countably many essential counterexamples to Schanuel’s conjecture.

متن کامل

Conformally Osserman Manifolds

An algebraic curvature tensor is called Osserman if the eigenvalues of the associated Jacobi operator are constant on the unit sphere. A Riemannian manifold is called conformally Osserman if its Weyl conformal curvature tensor at every point is Osserman. We prove that a conformally Osserman manifold of dimension n 6= 3, 4, 16 is locally conformally equivalent either to a Euclidean space or to a...

متن کامل

ar X iv : 0 71 0 . 03 28 v 1 [ m at h . M G ] 1 O ct 2 00 7 Hyperplane Arrangements with Large Average Diameter

The largest possible average diameter of a bounded cell of a simple hyperplane arrangement is conjectured to be not greater than the dimension. We prove that this conjecture holds in dimension 2, and is asymptotically tight in fixed dimension. We give the exact value of the largest possible average diameter for all simple arrangements in dimension 2, for arrangements having at most the dimensio...

متن کامل

ar X iv : 0 80 6 . 01 70 v 1 [ m at h . Q A ] 2 J un 2 00 8 WEIGHT MULTIPLICITY POLYNOMIALS OF MULTI - VARIABLE WEYL MODULES

This paper is based on the observation that dimension of weight spaces of multi-variable Weyl modules depends polynomially on the highest weight (Conjecture 1). We support this conjecture by various explicit answers for up to three variable cases and discuss the underlying combinatorics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002