Automatic Feature Weighting in Automatic Transcription of Specified Part in Polyphonic Music

نویسندگان

  • Katsutoshi Itoyama
  • Tetsuro Kitahara
  • Kazunori Komatani
  • Tetsuya Ogata
  • Hiroshi G. Okuno
چکیده

We studied the problem of automatic music transcription (AMT) for polyphonic music. AMT is an important task for music information retrieval because AMT results enable retrieving musical pieces, high-level annotation, demixing, etc. We attempted to transcribe a part played by an instrument specified by users (specified part tracking). Only two timbre models are required in the specified part tracking to identify the specified musical instrument even when the number of instruments increases. This transcription is formulated into a time-series classification problem with multiple features. We furthermore attempted to automatically estimate weights of the features, because the importance of these features varies for each musical signal. We estimated quasi-optimal weights of the features using a genetic algorithm for each musical signal. We tested our AMT system using trio stereo musical signals. Accuracies with our feature weighting method were 69.8% on average, whereas those without feature weighting were 66.0%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Automatic Music Transcription: Extraction of MIDI-Data out of Polyphonic Piano Music

Driven by the increasing amount of music available electronically the need of automatic search and retrieval systems for music becomes more and more important. In this paper an algorithm for automatic transcription of polyphonic piano music into MIDI data is presented, which is a very interesting basis for database applications and music analysis. The first part of the algorithm performs a note...

متن کامل

City Research Online IMPROVING INSTRUMENT RECOGNITION IN POLYPHONIC MUSIC THROUGH SYSTEM INTEGRATION

A method is proposed for instrument recognition in polyphonic music which combines two independent detector systems. A polyphonic musical instrument recognition system using a missing feature approach and an automatic music transcription system based on shift invariant probabilistic latent component analysis that includes instrument assignment. We propose a method to integrate the two systems b...

متن کامل

Automatic Music Transcription based on Non-Negative Matrix Factorization

In this paper, we present a method for the automatic transcription of polyphonic piano music. The input to this method consists in piano music recordings stored in WAV files, while the pitch of all the notes in the corresponding score forms the output. This method operates on a frame-by-frame basis and exploits a suitable time-frequency representation of the audio signal. The solution proposed ...

متن کامل

Automatic Polyphonic Piano Music Transcription by a Multi-classification Discriminative-Learning

In this paper we investigate on the use locally recurrent neural networks (LRNN), trained by a discriminative learning approach, for automatic polyphonic piano music transcription. Due to polyphonic characteristic of the input signal standard discriminative learning (DL) is not adequate and a suitable modification, called multi-classification discriminative learning (MCDL), is introduced. The a...

متن کامل

Short-Term Memory and Event Memory Classification Systems for Automatic Polyphonic Music Transcription

Music transcription consists in transforming the musical content of audio data into a symbolic representation. The objective of this study is to investigate a transcription system for polyphonic piano. The input to this system consists in piano music recordings stored in WAV files, while the pitch of all the notes in the corresponding score forms the output. The proposed method focuses on tempo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006