Automorphisms of Wonderful Varieties
نویسنده
چکیده
Let G be a complex semisimple linear algebraic group, and X a wonderful G-variety. We determine the connected automorphism group Aut(X) and we calculate Luna’s invariants of X under its action.
منابع مشابه
Classification of Strict Wonderful Varieties
In the setting of strict wonderful varieties we answer positively to Luna’s conjecture, saying that wonderful varieties are classified by combinatorial objects, the so-called spherical systems. In particular, we prove that strict wonderful varieties are mostly obtained from symmetric spaces, spherical nilpotent orbits or model spaces. To make the paper self-contained as much as possible, we sha...
متن کاملN ov 2 00 8 INVARIANT HILBERT SCHEMES AND WONDERFUL VARIETIES STÉPHANIE
The invariant Hilbert schemes considered in [4] were proved to be affine spaces. The proof relied on the classification of strict wonderful varieties. We obtain in the present article a classification-free proof of the affinity of these invariant Hilbert scheme by means of deformation theoretical arguments. As a consequence we recover in a shorter way the classification of strict wonderful vari...
متن کاملFano symmetric varieties with low rank
The symmetric projective varieties of rank one are all smooth and Fano by a classic result of Akhiezer. We classify the locally factorial (respectively smooth) projective symmetric G-varieties of rank 2 which are Fano. When G is semisimple we classify also the locally factorial (respectively smooth) projective symmetric G-varieties of rank 2 which are only quasi-Fano. Moreover, we classify the ...
متن کاملAutomorphisms, Root Systems, and Compactifications of Homogeneous Varieties
Let G be a complex semisimple group and let H ⊆ G be the group of fixed points of an involutive automorphism of G. Then X = G/H is called a symmetric variety. In [CP], De Concini and Procesi have constructed an equivariant compactification X which has a number of remarkable properties, some of them being: i) The boundary is the union of divisors D1, . . . , Dr. ii) There are exactly 2 orbits. T...
متن کاملDynamics of Automorphisms of Compact Complex Manifolds
We give an algebro-geometric approach towards the dynamics of automorphisms/endomorphisms of projective varieties or compact Kähler manifolds, try to determine the building blocks of automorphisms /endomorphisms, and show the relation between the dynamics of automorphisms/endomorphisms and the geometry of the underlying manifolds.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008