Analysis of EEG Dynamics in Epileptic Patients and Healthy Subjects Using Hilbert Transform Scatter Plots
نویسنده
چکیده
In this study, we investigated the electroencephalogram (EEG) dynamics in normal and epileptic subjects using three newly defined quantifiers adapted from nonlinear dynamics and Hilbert transform scatter plots (HTSPs): dispersion entropy (DispEntropy), dispersion complexity (Disp Comp), and forbidden count (FC), hypothesizing that analysis of electroencephalogram (EEG) signals using nonlinear and deterministic chaos theory may provide clinicians with information for medical diagnosis and assessment of the applied therapy. DispEntropy evaluates irregularity of the EEG time series. DispComp and FC quantify degree of variability of the time series. Receiver operating characteristic (ROC) analysis reveals that all the three quantifiers can discriminate between seizure and non-seizure states with very high accuracy. The application of such a technique is justified by ascertaining the presence of nonlinearity in the EEG time series through the use of surrogate test. The false positive rejection of the null hypothesis is eliminated by employing Welch window before the computation of the Fourier transform and randomizing the phases, in the generation of the surrogate data. Paired t-test revealed significant differences between the measures of the original time series and those of their respective surrogated time series, indicating the presence of deterministic chaos in the original EEG time series.
منابع مشابه
Classification of EEG signals for detection of epileptic seizures based on wavelets and statistical pattern recognition
The electroencephalogram (EEG) signal is very important in the diagnosis of epilepsy. Long-term EEG recordings of an epileptic patient contain a huge amount of EEG data. The detection of epileptic activity is, therefore, a very demanding process that requires a detailed analysis of the entire length of the EEG data, usually performed by an expert. This paper describes an automated classificatio...
متن کاملP81: Detection of Epileptic Seizures Using EEG Signal Processing
Epilepsy is the most common brain diseases that cause many problems in the daily life of the patient. In most attempts to automatic detection, the attack used an EEG. In this paper, The complete data set consists of five sets recorded from normal and epileptic patients. Each set containing 100 single-channel EEG segments. Here we used first and last sets (A and E). Set A consisted of segments r...
متن کاملSeparation of Rhythms of EEG Signals Based on Hilbert-Huang Transformation with Application to Seizure Detection
We present a new method for separation of the rhythms of the electroencephalogram (EEG) signal. The proposed method is based on the Hilbert-Huang transform (HHT). The HHT consists two steps namely empirical mode decomposition (EMD) and the Hilbert transform (HT). The EMD decomposes EEG signal into set of narrow-band intrinsic mode functions (IMFs), and the Hilbert transformation of these IMFs p...
متن کاملOptimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier
Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...
متن کاملA Time-Frequency approach for EEG signal segmentation
The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015