Simulated annealing for hard satisfiability problems
نویسنده
چکیده
Satisfiability (SAT) refers to the task of finding a truth assignment that makes an arbitrary boolean expression true. This paper compares a simulated annealing algorithm (SASAT) with GSAT (Selman et al., 1992), a greedy algorithm for solving satisfiability problems. GSAT can solve problem instances that are extremely difficult for traditional satisfiability algorithms. Results suggest that SASAT scales up better as the number of variables increases, solving at least as many hard SAT problems with less effort. The paper then presents an ablation study that helps to explain the relative advantage of SASAT over GSAT. Finally, an improvement to the basic SASAT algorithm is examined, based on a random walk suggested by Selman et al. (1993).
منابع مشابه
Optimization by quantum annealing: lessons from hard satisfiability problems.
The path integral Monte Carlo simulated quantum annealing algorithm is applied to the optimization of a large hard instance of the random satisfiability problem (N = 10,000). The dynamical behavior of the quantum and the classical annealing are compared, showing important qualitative differences in the way of exploring the complex energy landscape of the combinatorial optimization problem. At v...
متن کاملSimulated Annealing Approach for Solving Bilevel Programming Problem
Bilevel programming, a tool for modeling decentralized decision problems, consists of the objective of the leader at its first level and that of the follower at the second level. Bilevel programming has been proved to be an Np-hard problem. Numerous algorithms have been developed for solving bilevel programming problems. These algorithms lack the required efficiency for solving a real problem. ...
متن کاملAn Empirical Study of Greedy Local Search for Satisfiability Testing
GSAT is a randomized local search procedure for solving propositional satisfiability problems. GSAT can solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approaches, such as the Davis-Putnam procedure. This paper presents the results of numerous experiments we have performed with GSAT, in order to improve our underst...
متن کاملA Single Machine Sequencing Problem with Idle Insert: Simulated Annealing and Branch-and-Bound Methods
In this paper, a single machine sequencing problem is considered in order to find the sequence of jobs minimizing the sum of the maximum earliness and tardiness with idle times (n/1/I/ETmax). Due to the time complexity function, this sequencing problem belongs to a class of NP-hard ones. Thus, a special design of a simulated annealing (SA) method is applied to solve such a hard problem. To co...
متن کاملSimulated Annealing Approach for Solving Bilevel Programming Problem
Bilevel programming, a tool for modeling decentralized decision problems, consists of the objective of the leader at its first level and that of the follower at the second level. Bilevel programming has been proved to be an Np-hard problem. Numerous algorithms have been developed for solving bilevel programming problems. These algorithms lack the required efficiency for solving a real problem. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1993