Psp Stress Response Proteins Form a Complex with Mislocalized Secretins in the Yersinia enterocolitica Cytoplasmic Membrane

نویسندگان

  • Disha Srivastava
  • Amal Moumene
  • Josué Flores-Kim
  • Andrew J Darwin
چکیده

The bacterial phage shock protein system (Psp) is a conserved extracytoplasmic stress response that is essential for the virulence of some pathogens, including Yersinia enterocolitica It is induced by events that can compromise inner membrane (IM) integrity, including the mislocalization of outer membrane pore-forming proteins called secretins. In the absence of the Psp system, secretin mislocalization permeabilizes the IM and causes rapid cell death. The Psp proteins PspB and PspC form an integral IM complex with two independent roles. First, the PspBC complex is required to activate the Psp response in response to some inducing triggers, including a mislocalized secretin. Second, PspBC are sufficient to counteract mislocalized secretin toxicity. Remarkably, secretin mislocalization into the IM induces psp gene expression without significantly affecting the expression of any other genes. Furthermore, psp null strains are killed by mislocalized secretins, whereas no other null mutants have been found to share this specific secretin sensitivity. This suggests an exquisitely specific relationship between secretins and the Psp system, but there has been no mechanism described to explain this. In this study, we addressed this deficiency by using a coimmunoprecipitation approach to show that the Psp proteins form a specific complex with mislocalized secretins in the Y. enterocolitica IM. Importantly, analysis of different secretin mutant proteins also revealed that this interaction is absolutely dependent on a secretin adopting a multimeric state. Therefore, the Psp system has evolved with the ability to detect and detoxify dangerous secretin multimers while ignoring the presence of innocuous monomers.IMPORTANCE The phage shock protein (Psp) response has been linked to important phenotypes in diverse bacteria, including those related to antibiotic resistance, biofilm formation, and virulence. This has generated widespread interest in understanding various aspects of its function. Outer membrane secretin proteins are essential components of export systems required for the virulence of many bacterial pathogens. However, secretins can mislocalize into the inner membrane, and this induces the Psp response in a highly specific manner and kills Psp-defective strains with similar specificity. There has been no mechanism described to explain this exquisitely specific relationship between secretins and the Psp system. Therefore, this study provides a critical advance by discovering that Psp effector proteins form a complex with secretins in the Yersinia enterocolitica inner membrane. Remarkably, this interaction is absolutely dependent on a secretin adopting its multimeric state. Therefore, the Psp system detects and detoxifies dangerous secretin multimers, while ignoring the presence of innocuous secretin monomers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of inducers of the Yersinia enterocolitica phage shock protein system and comparison to the regulation of the RpoE and Cpx extracytoplasmic stress responses.

Known inducers of the phage shock protein (Psp) system suggest that it is an extracytoplasmic stress response, as are the well-studied RpoE and Cpx systems. However, a random approach to identify conditions and proteins that induce the Psp system has not been attempted. It is also unknown whether the proteins or mutations that induce Psp are specific or if they also activate the RpoE and Cpx sy...

متن کامل

Phage shock protein C (PspC) of Yersinia enterocolitica is a polytopic membrane protein with implications for regulation of the Psp stress response.

Phage shock proteins B (PspB) and C (PspC) are integral cytoplasmic membrane proteins involved in inducing the Yersinia enterocolitica Psp stress response. A fundamental aspect of these proteins that has not been studied in depth is their membrane topologies. Various in silico analyses universally predict that PspB is a bitopic membrane protein with the C terminus inside. However, similar analy...

متن کامل

FtsH-dependent degradation of phage shock protein C in Yersinia enterocolitica and Escherichia coli.

The widely conserved phage shock protein (Psp) extracytoplasmic stress response has been studied extensively in Escherichia coli and Yersinia enterocolitica. Both species have the PspF, -A, -B, and -C proteins, which have been linked to robust phenotypes, including Y. enterocolitica virulence. PspB and PspC are cytoplasmic membrane proteins required for stress-dependent induction of psp gene ex...

متن کامل

The Yersinia enterocolitica phage shock proteins B and C can form homodimers and heterodimers in vivo with the possibility of close association between multiple domains.

The Yersinia enterocolitica phage shock protein (Psp) stress response is essential for virulence and for survival during the mislocalization of outer membrane secretin proteins. The cytoplasmic membrane proteins PspB and PspC are critical components involved in regulating psp gene expression and in facilitating tolerance to secretin-induced stress. Interactions between PspB and PspC monomers mi...

متن کامل

Analysis of secretin-induced stress in Pseudomonas aeruginosa suggests prevention rather than response and identifies a novel protein involved in secretin function.

Secretins are bacterial outer membrane proteins that are important for protein export. However, they can also mislocalize and cause stress to the bacterial cell, which is dealt with by the well-conserved phage shock protein (Psp) system in a highly specific manner. Nevertheless, some bacteria have secretins but no Psp system. A notable example is Pseudomonas aeruginosa, a prolific protein secre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017