High responsiveness and direction sensitivity of neurons in the rat thalamic reticular nucleus to vibrissa deflections.

نویسندگان

  • J A Hartings
  • S Temereanca
  • D J Simons
چکیده

The thalamic reticular nucleus (Rt) is strategically positioned to integrate descending and ascending signals in the control of sensorimotor and other thalamocortical activity. Its prominent role in the generation of sleep spindles notwithstanding, relatively little is known of Rt function in regulating interactions with the sensory environment. We recorded and compared the responses of individual Rt and thalamocortical neurons in the ventroposterior medial (VPm) nucleus of the rat to controlled deflections of mystacial vibrissae. Transient Rt responses to the onset (ON) and offset (OFF) of vibrissa deflection are larger and longer in duration than those of VPm and of all other populations studied in the whisker/barrel pathway. Magnitudes of ON and OFF responses in Rt were negatively correlated with immediately preceding activities, suggesting a contribution of low-threshold T-type Ca(2+) channels. Rt neurons also respond with high tonic firing rates during sustained vibrissa deflections. By comparison, VPm neurons are less likely to respond tonically and are more likely to exhibit tonic suppression. Rt and VPm populations are similar to each other, however, in that they retain properties of directional sensitivity established in primary afferent neurons. In both populations neurons are selective for deflection angle and exhibit directional consistency, responding best to a particular direction of movement regardless of the starting position of the vibrissal hair. These findings suggest a role for Rt in the processing of detailed sensory information. Temporally, Rt may function to limit the duration of stimulus-evoked VPm responses and to focus them on rapid vibrissa perturbations. Moreover, by regulating the baseline activity of VPm neurons, Rt may indirectly enhance the response selectivity of layer IV barrel neurons to synchronous VPm firing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition suppresses transmission of tonic vibrissa-evoked activity in the rat ventrobasal thalamus.

Previous studies have demonstrated that tonic responses of trigeminal ganglion neurons to maintained whisker deflections are transformed to mainly phasic responses in thalamocortical neurons. The high tonic responsiveness of thalamic reticular neurons suggests that thalamic inhibition may contribute to this suppression of tonic activity. To test this hypothesis we recorded responses of thalamoc...

متن کامل

Morphology and Synaptic Organization of Non-Dopaminergic Nigral Projections to the Medio Dorsal Thalamic Nucleus of the Rat, a Study by Anterograde Transport of PHA-L

Background: Mediodorsal (MD) thalamic nucleus, which is considered to take place between extra pyramidal and limbic feedback circuit, receives projective fibers from ventrolateral neurons of reticular part of substantia nigra (SNr). In order to better understand the influence and chemical reaction of these fibers upon MD nucleus, the morphology and synaptology of them were examined in the prese...

متن کامل

Consistency of angular tuning in the rat vibrissa system.

Each region along the rat mystacial vibrissa pathway contains neurons that respond preferentially to vibrissa deflections in a particular direction, a property called angular tuning. Angular tuning is normally defined using responses to deflections of the principal vibrissa, which evokes the largest response magnitude. However, neurons in most brain regions respond to multiple vibrissae and do ...

متن کامل

Nonlinear Cortical Responses can be Generated by Precise Timing of Thalamic Spikes in the Rat Vibrissa System

Rats and other rodents use their vibrissae to actively explore the external environment, and can discriminate between similar textures using only their vibrissae. As a rat whisks against an object, patterns of vibrissa deflections are produced that reflect the interaction between the vibrissa movement and the textural properties of surfaces. The peripheral representations of the stimulus are tr...

متن کامل

Encoding of stimulus frequency and sensor motion in the posterior medial thalamic nucleus.

In all sensory systems, information is processed along several parallel streams. In the vibrissa-to-barrel cortex system, these include the lemniscal system and the lesser-known paralemniscal system. The posterior medial nucleus (POm) is the thalamic structure associated with the latter pathway. Previous studies suggested that POm response latencies are positively correlated with stimulation fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 83 5  شماره 

صفحات  -

تاریخ انتشار 2000