Harmonic mean, random polynomials and stochastic matrices
نویسندگان
چکیده
Motivated by a problem in learning theory, we are led to study the dominant eigenvalue of a class of random matrices. This turns out to be related to the roots of the derivative of random polynomials (generated by picking their roots uniformly at random in the interval [0, 1], although our results extend to other distributions). This, in turn, requires the study of the statistical behavior of the harmonic mean of random variables as above, and that, in turn, leads us to delicate question of the rate of convergence to stable laws and tail estimates for stable laws. Introduction The original motivation for the work in this paper was provided by the first-named author’s research in learning theory, specifically in various models of language acquisition (see [KNN2001, NKN2001, KN2001]) and more specifically yet by the analysis of the speed of convergence of the memoryless learner algorithm. The setup is described in some detail in section 3.1, but here we will just recall the essentials: there is a collection of concepts R1, . . . , Rn and words which refer to this concepts, sometimes ambiguously. The teacher generates a stream of words, referring to the concept R1. This is not known to the student, but he must learn by, at each steps, guessing some concept Ri and checking for consistency with the teacher’s input. The memoryless learner algorithm consists of picking a concept Ri at random, and sticking by this choice, until it is proven wrong. At this point another concept is picked randomly, and the procedure repeats. It is clear that once the student hits on the right answer R1, this will be his final answer, so the question is then: 1991 Mathematics Subject Classification. 60E07, 60F15, 60J20, 91E40, 26C10.
منابع مشابه
ec 2 00 1 HARMONIC MEAN , RANDOM POLYNOMIALS AND STOCHASTIC MATRICES
Motivated by a problem in learning theory, we are led to study the dominant eigenvalue of a class of random matrices. This turns out to be related to the roots of the derivative of random polynomials (generated by picking their roots uniformly at random in the interval [0, 1], although our results extend to other distributions). This, in turn, requires the study of the statistical behavior of t...
متن کاملNumerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کاملRandom Matrices, Magic Squares and Matching Polynomials
Characteristic polynomials of random unitary matrices have been intensively studied in recent years: by number theorists in connection with Riemann zetafunction, and by theoretical physicists in connection with Quantum Chaos. In particular, Haake and collaborators have computed the variance of the coefficients of these polynomials and raised the question of computing the higher moments. The ans...
متن کاملar X iv : m at h / 01 05 23 6 v 1 [ m at h . PR ] 2 9 M ay 2 00 1 HARMONIC MEAN , RANDOM POLYNOMIALS AND STOCHASTIC MATRICES
Motivated by a problem in learning theory, we are led to study the dominant eigenvalue of a class of random matrices. This turns out to be related to the roots of the derivative of random polynomials (generated by picking their roots uniformly at random in the interval [0, 1], although our results extend to other distributions). This, in turn, requires the study of the statistical behavior of t...
متن کاملNumerical solution of second-order stochastic differential equations with Gaussian random parameters
In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره math.PR/0105236 شماره
صفحات -
تاریخ انتشار 2001