Quasi-stationary distributions and Yaglom limits of self-similar Markov processes
نویسندگان
چکیده
We discuss the existence and characterization of quasi-stationary distributions and Yaglom limits of self-similar Markov processes that reach 0 in finite time. By Yaglom limit, we mean the existence of a deterministic function g and a non-trivial probability measure ν such that the process rescaled by g and conditioned on non-extinction converges in distribution towards ν. If the study of quasi-stationary distributions is easy and follows mainly from a previous result by Bertoin and Yor [5] and Berg [2], that of Yaglom limits is more challenging. We will see that a Yaglom limit exits if and only if the extinction time at 0 of the process is in the domain of attraction of an extreme law and we will then treat separately three cases, according whether the extinction time is in the domain of attraction of a Gumbel law, a Weibull law or a Fréchet law. In each of these cases, necessary and sufficient conditions on the parameters of the underlying Lévy process are given for the extinction time to be in the required domain of attraction. The limit of the process conditioned to be positive is then characterized by a multiplicative equation which is connected to a factorization of the exponential distribution in the Gumbel case, a factorization of a Beta distribution in the Weibull case and a factorization of a Pareto distribution in the Fréchet case. This approach relies partly on results on the tail distribution of the extinction time, which is known to be distributed as the exponential integral of a Lévy process. In that aim, new results on such tail distributions are given, which may be of independent interest. Last, we present applications of the Fréchet case to a family of Ornstein-Uhlenbeck processes. AMS subject classifications: 60G18; 60F05; 60G51.
منابع مشابه
Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct
We consider continuous-state branching (CB) processes which become extinct (i.e., hit 0) with positive probability. We characterize all the quasi-stationary distributions (QSD) for the CB-process as a stochastically monotone family indexed by a real number. We prove that the minimal element of this family is the so-called Yaglom quasi-stationary distribution, that is, the limit of one-dimension...
متن کاملAsymptotic behavior of solutions to the fragmentation equation with shattering: an approach via self-similar Markov processes
The subject of this paper is a fragmentation equation with non-conservative solutions, some mass being lost to a dust of zero-mass particles as a consequence of an intensive splitting. Under some assumptions of regular variation on the fragmentation rate, we describe the largetime behavior of solutions. Our approach is based on probabilistic tools: the solutions to the fragmentation equation ar...
متن کاملQuasi-stationary Distributions and Diffusion Models in Population Dynamics by Patrick Cattiaux, Pierre Collet,
In this paper we study quasi-stationarity for a large class of Kolmogorov diffusions. The main novelty here is that we allow the drift to go to −∞ at the origin, and the diffusion to have an entrance boundary at +∞. These diffusions arise as images, by a deterministic map, of generalized Feller diffusions, which themselves are obtained as limits of rescaled birth–death processes. Generalized Fe...
متن کاملQuasi-stationary Distributions: A Bibliography
Quasi-stationary distributions have been used to model the long-term behaviour of stochastic systems which in some sense terminate, but appear to be stationary over any reasonable time scale. Imagine population is observed to be extant at some time t. What is the chance of there being precisely i individuals present? If we were equipped with the full set of state probabilities, we would evaluat...
متن کاملQuasi-stationary Distributions and Diffusion Models in Population Dynamics
In this paper, we study quasi-stationarity for a large class of Kolmogorov diffusions. The main novelty here is that we allow the drift to go to −∞ at the origin, and the diffusion to have an entrance boundary at +∞. These diffusions arise as images, by a deterministic map, of generalized Feller diffusions, which themselves are obtained as limits of rescaled birth–death processes. Generalized F...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011