Discovering naturally processed antigenic determinants that confer protective T cell immunity.
نویسندگان
چکیده
CD8+ T cells (TCD8) confer protective immunity against many infectious diseases, suggesting that microbial TCD8 determinants are promising vaccine targets. Nevertheless, current T cell antigen identification approaches do not discern which epitopes drive protective immunity during active infection - information that is critical for the rational design of TCD8-targeted vaccines. We employed a proteomics-based approach for large-scale discovery of naturally processed determinants derived from a complex pathogen, vaccinia virus (VACV), that are presented by the most frequent representatives of four major HLA class I supertypes. Immunologic characterization revealed that many previously unidentified VACV determinants were recognized by smallpox-vaccinated human peripheral blood cells in a variegated manner. Many such determinants were recognized by HLA class I-transgenic mouse immune TCD8 too and elicited protective TCD8 immunity against lethal intranasal VACV infection. Notably, efficient processing and stable presentation of immune determinants as well as the availability of naive TCD8 precursors were sufficient to drive a multifunctional, protective TCD8 response. Our approach uses fundamental insights into T cell epitope processing and presentation to define targets of protective TCD8 immunity within human pathogens that have complex proteomes, suggesting that this approach has general applicability in vaccine sciences.
منابع مشابه
Priming protective CD8 T cell immunity by DNA vaccines encoding chimeric, stress protein-capturing tumor-associated antigen.
DNA vaccines encoding heat shock protein (hsp)-capturing, chimeric peptides containing antigenic determinants of the tumor-associated Ag (TAA) gp70 (an envelope protein of endogenous retrovirus) primed stable, specific, and tumor-protective CD8 T cell immunity. Expression of gp70 transcripts was detectable in most normal tissues but was particularly striking in some (but not all) tumor cell lin...
متن کاملMechanisms of vaccine-induced protective immunity against Coxiella burnetii infection in BALB/c mice.
To elucidate the mechanisms of vaccine-induced protective immunity against Coxiella burnetii infection, we compared the protective efficacy and immunogenicity between formalin-inactivated phase I vaccine (PI-V) and phase II vaccine (PII-V) in BALB/c mice. PI-V generated significant protection while PII-V did not confer measurable protection. Analysis of cytokine and subclass Ab responses indica...
متن کاملIdentification of novel immunodominant CD4+ Th1-type T-cell peptide epitopes from herpes simplex virus glycoprotein D that confer protective immunity.
The molecular characterization of the epitope repertoire on herpes simplex virus (HSV) antigens would greatly expand our knowledge of HSV immunity and improve immune interventions against herpesvirus infections. HSV glycoprotein D (gD) is an immunodominant viral coat protein and is considered an excellent vaccine candidate antigen. By using the TEPITOPE prediction algorithm, we have identified ...
متن کاملCytotoxic CD4 T Cells in Antiviral Immunity
CD4 T cells that acquire cytotoxic phenotype and function have been repeatedly identified in humans, mice, and other species in response to many diverse pathogens. Since CD4 cytotoxic T cells are able to recognize antigenic determinants unique from those recognized by the parallel CD8 cytotoxic T cells, they can potentially contribute additional immune surveillance and direct effector function ...
متن کاملCD4+ T lymphocytes from Anaplasma marginale major surface protein 2 (MSP2) vaccinees recognize naturally processed epitopes conserved in MSP3.
Major surface protein 2 (MSP2) and MSP3 of the persistent bovine ehrlichial pathogen Anaplasma marginale are immunodominant proteins that undergo antigenic variation. The recently completed sequence of MSP3 revealed blocks of amino acids in the N and C termini that are conserved with MSP2. This study tested the hypothesis that CD4+ T cells specific for MSP2 recognize naturally processed epitope...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 123 5 شماره
صفحات -
تاریخ انتشار 2013