First-Principles Theoretical Studies and Nanocalorimetry Experiments on Solid-State Alloying of Zr-B.
نویسندگان
چکیده
The thermodynamics and kinetics of the solid-state alloying of Zr-B, underlying a variety of synthesis processes of the ultrahigh-temperature ceramic ZrB2, are widely unknown. We investigate the energetics, diffusion kinetics, and structural evolution of this system using first-principles computational methods. We identify the diffusion pathways in the interpenetrating network of interstitial sites for a single B atom and demonstrate a dominant rate-controlling step from the octahedral to the crowdion site that is distinct from the conventional mechanism of octahedral-tetrahedral transition in hexagonal close-packed structures. In the intermediate compounds ZrBx, 0 < x ≤ 2, the diffusivity of B is highly dependent on the composition while reaching a minimum for ZrB. The activation barrier of diffusion in ZrB2 is in good agreement with nanocalorimetry measurements performed on Zr/B reactive nanolaminates.
منابع مشابه
Kinetic Role of Carbon in Solid-State Synthesis of Zirconium Diboride using Nanolaminates: Nanocalorimetry Experiments and First-Principles Calculations.
Reactive nanolaminates afford a promising route for the low-temperature synthesis of zirconium diboride, an ultrahigh-temperature ceramic with metallic properties. Although the addition of carbon is known to facilitate sintering of ZrB2, its effect on the kinetics of the formation reaction has not been elucidated. We have employed a combined approach of nanocalorimetry and first-principles theo...
متن کاملEffect of Mechanical Alloying and Sintering on Phase Transformation, Microstructural Evolution, Mechanical Properties and Density of Zr-Cr Alloy
The purpose of present research was production ofZr-based alloy as the nuclear fuel cladding by mechanical alloying (MA) and sintering process. Firstly, Zr and Cr powders were mechanically alloyed to produce the refractory and hard Zr-10 wt% Cr alloy, and then, the powder mixtures were consolidated by press and following sintering at temperature of 800˚C min. The phase evolution, microstructura...
متن کاملOptimization of micro hardness of nanostructure Cu-Cr-Zr alloys prepared by the mechanical alloying using artificial neural networks and genetic algorithm
Cu–Cr-Zr alloys had wide applications in engineering applications such as electrical and welding industrial especially for their high strength, high electrical as well as acceptable thermal conductivities and melting points. It was possible to prepare the nano-structure of these age hardenable alloys using mechanical alloying method as a cheap and mass production technique to prepare the non-eq...
متن کاملEffect of Rare Earth Elements on the Sorption Characteristics of Nanostructured Zr-base Sinter Porous Getter Prepared by Mechanical Alloying
The effect of rare earth (RE) elements, including Ce and La, on the sorption properties of Zr-Co getters was investigated in this work. The phase evolution, microstructural characteristics of getter powders were studied by means of X-ray diffraction method, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The nanostructured Zr3Co intermetallic compound has been...
متن کاملThe Influence Of Process Control Agent (P.C.A)’S State on Expedition of Mechanical Alloying of Anostructure Tial(Γ) Alloy
In this research, the effect of two process control agent: methanol (liquid state) and stearicacid (solid state) on mechanical alloying process of Ti and Al with equal at%(Ti50Al50) wereinvestigated. Phase transformation at presence of two PCA was: at first, powder mixture wastransformed to a metastable solid solution of Al in Ti lattice (disordered hcp) and then transformed toamorphous phase w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 15 10 شماره
صفحات -
تاریخ انتشار 2015