First-Principles Theoretical Studies and Nanocalorimetry Experiments on Solid-State Alloying of Zr-B.

نویسندگان

  • Dongwoo Lee
  • Joost J Vlassak
  • Kejie Zhao
چکیده

The thermodynamics and kinetics of the solid-state alloying of Zr-B, underlying a variety of synthesis processes of the ultrahigh-temperature ceramic ZrB2, are widely unknown. We investigate the energetics, diffusion kinetics, and structural evolution of this system using first-principles computational methods. We identify the diffusion pathways in the interpenetrating network of interstitial sites for a single B atom and demonstrate a dominant rate-controlling step from the octahedral to the crowdion site that is distinct from the conventional mechanism of octahedral-tetrahedral transition in hexagonal close-packed structures. In the intermediate compounds ZrBx, 0 < x ≤ 2, the diffusivity of B is highly dependent on the composition while reaching a minimum for ZrB. The activation barrier of diffusion in ZrB2 is in good agreement with nanocalorimetry measurements performed on Zr/B reactive nanolaminates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic Role of Carbon in Solid-State Synthesis of Zirconium Diboride using Nanolaminates: Nanocalorimetry Experiments and First-Principles Calculations.

Reactive nanolaminates afford a promising route for the low-temperature synthesis of zirconium diboride, an ultrahigh-temperature ceramic with metallic properties. Although the addition of carbon is known to facilitate sintering of ZrB2, its effect on the kinetics of the formation reaction has not been elucidated. We have employed a combined approach of nanocalorimetry and first-principles theo...

متن کامل

Effect of Mechanical Alloying and Sintering on Phase Transformation, Microstructural Evolution, Mechanical Properties and Density of Zr-Cr Alloy

The purpose of present research was production ofZr-based alloy as the nuclear fuel cladding by mechanical alloying (MA) and sintering process. Firstly, Zr and Cr powders were mechanically alloyed to produce the refractory and hard Zr-10 wt% Cr alloy, and then, the powder mixtures were consolidated by press and following sintering at temperature of 800˚C min. The phase evolution, microstructura...

متن کامل

Optimization of micro hardness of nanostructure Cu-Cr-Zr alloys prepared by the mechanical alloying using artificial neural networks and genetic algorithm

Cu–Cr-Zr alloys had wide applications in engineering applications such as electrical and welding industrial especially for their high strength, high electrical as well as acceptable thermal conductivities and melting points. It was possible to prepare the nano-structure of these age hardenable alloys using mechanical alloying method as a cheap and mass production technique to prepare the non-eq...

متن کامل

Effect of Rare Earth Elements on the Sorption Characteristics of Nanostructured Zr-base Sinter Porous Getter Prepared by Mechanical Alloying

The effect of rare earth (RE) elements, including Ce and La, on the sorption properties of Zr-Co getters was investigated in this work. The phase evolution, microstructural characteristics of getter powders were studied by means of X-ray diffraction method, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The nanostructured Zr3Co intermetallic compound has been...

متن کامل

The Influence Of Process Control Agent (P.C.A)’S State on Expedition of Mechanical Alloying of Anostructure Tial(Γ) Alloy

In this research, the effect of two process control agent: methanol (liquid state) and stearicacid (solid state) on mechanical alloying process of Ti and Al with equal at%(Ti50Al50) wereinvestigated. Phase transformation at presence of two PCA was: at first, powder mixture wastransformed to a metastable solid solution of Al in Ti lattice (disordered hcp) and then transformed toamorphous phase w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 15 10  شماره 

صفحات  -

تاریخ انتشار 2015