Dysregulation of In Vitro Decidualization of Human Endometrial Stromal Cells by Insulin via Transcriptional Inhibition of Forkhead Box Protein O1
نویسندگان
چکیده
Insulin resistance and compensatory hyperinsulinemia are characteristic features of obesity and polycystic ovary syndrome, and both are associated with reduced fertility and implantation. There is little knowledge about the effect of insulin on the decidualization process and previous findings are contradictory. We investigated the effect of insulin on the regulation of forkhead box protein O1 (FOXO1), one of the most important transcription factors during decidualization. Endometrial stromal cells were isolated from six healthy, regularly menstruating women and decidualized in vitro. Gene expression levels of six putative FOXO1 target genes (including insulin-like growth factor binding protein-1 (IGFBP1) and prolactin (PRL)) were measured with Real-Time PCR following FOXO1 inhibition or insulin treatment. PI3K inhibition was used to identify the possible mechanism behind regulation. Subcellular localization of FOXO1 was analyzed with immunofluorescence. All the genes (IGFBP1, CTGF, INSR, DCN, LEFTY2), except prolactin, were evaluated as FOXO1 target genes in decidualizing stromal cells. Insulin caused a significant dose-dependent inhibition of the verified FOXO1 target genes. It was also demonstrated that insulin regulated FOXO1 target genes by transcriptional inactivation and nuclear export of FOXO1 via PI3K pathway. However, insulin did not inhibit the morphological transformation of endometrial stromal cells via transcriptional inactivation of FOXO1. This study provides new insights on the action of insulin on the endometrium via regulation of FOXO1. It is suggested that hyperinsulinemia results in dysregulation of a high number of FOXO1 controlled genes that may contribute to endometrial dysfunction and reproductive failure. Our findings may illuminate possible reasons for unexplained infertility.
منابع مشابه
Krüppel-like factor 12 is a novel negative regulator of forkhead box O1 expression: a potential role in impaired decidualization
BACKGROUND Decidualization is a prerequisite for successful implantation and the establishment of pregnancy. Krüppel-like factor 12 (KLF12) is a negative regulator of endometrial decidualization in vitro. We investigated whether KLF12 was associated with impaired decidualization under conditions of repeated implantation failure (RIF). METHODS Uterine tissues were collected from a mouse model ...
متن کاملProkineticin 1 is up‐regulated by insulin in decidualizing human endometrial stromal cells
Prokineticin 1 (PROK1), a hypoxia-regulated angiogenic factor, has emerged as a crucial regulator of embryo implantation and placentation. Dysregulation of PROK1 has been linked to recurrent pregnancy loss, pre-eclampsia, foetal growth restriction and preterm birth. These pregnancy complications are common in women with obesity and polycystic ovary syndrome, i.e. conditions associated with insu...
متن کاملAdiponectin Ameliorates Experimental Periodontitis in Diet-Induced Obesity Mice
Adiponectin is an adipokine that sensitizes the body to insulin. Low levels of adiponectin have been reported in obesity, diabetes and periodontitis. In this study we established experimental periodontitis in male adiponectin knockout and diet-induced obesity mice, a model of obesity and type 2 diabetes, and aimed at evaluating the therapeutic potential of adiponectin. We found that systemic ad...
متن کاملMicroRNA-181a is involved in the regulation of human endometrial stromal cell decidualization by inhibiting Krüppel-like factor 12
BACKGROUND The transformation of endometrium into decidua is essential for normal implantation of the blastocyst. However, the post-transcriptional regulation and the miRNAs involved in decidualization remain poorly understood. Here, we examined microRNA-181a (miR-181a) expression in decidualized human endometrial stromal cell (hESC). In addition, we investigated the functional effect of miR-18...
متن کاملFoxM1 Directs STAT3 Expression Essential for Human Endometrial Stromal Decidualization
Human endometrium decidualization, which involves endometrial stromal proliferation and differentiation, is a prerequisite for embryo implantation, thus successful pregnancy. The Forkhead Box M1 (FoxM1), previously known as HNF-3, HFH-11, MPP2, Win, and Trident, is a transcriptional factor that plays crucial roles in cell proliferation and cell cycle progression. However, the molecular mechanis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017