Machine Translation of Multi-party Meetings: Segmentation and Disfluency Removal Strategies
نویسندگان
چکیده
Translating meetings presents a challenge since multispeaker speech shows a variety of disfluencies. In this paper we investigate the importance of transforming speech into well-written input prior to translating multi-party meetings. We first analyze the characteristics of this data and establish oracle scores. Sentence segmentation and punctuation are performed using a language model, turn information, or a monolingual translation system. Disfluencies are removed by a CRF model trained on in-domain and out-of-domain data. For comparison, we build a combined CRF model for punctuation insertion and disfluency removal. By applying these models, multi-party meetings are transformed into fluent input for machine translation. We evaluate the models with regard to translation performance and are able to achieve an improvement of 2.1 to 4.9 BLEU points depending on the availability of turn information.
منابع مشابه
Segmentation and disfluency removal for conversational speech translation
In this paper we focus on the effect of on-line speech segmentation and disfluency removal methods on conversational speech translation. In a real-time conversational speech to speech translation system, on-line segmentation of speech is required to avoid latency beyond few seconds. While sentential unit segmentation and disfluency removal have been heavily studied mainly for off-line speech pr...
متن کاملImproving Spoken Language Translation by Automatic Disfluency Removal : Evidence from Conversational Speech Transcripts
Machine translation of spoken language has made significant progress in recent years, however, translation quality is still limited due to specific idiosyncrasies of spoken language; including the lack of well-formed sentences and the presence of disfluencies. In this paper, we investigate the effect of disfluencies on Statistical Machine Translation (SMT) and introduce an Automatic Disfluency ...
متن کاملTight Integration of Speech Disfluency Removal into SMT
Speech disfluencies are one of the main challenges of spoken language processing. Conventional disfluency detection systems deploy a hard decision, which can have a negative influence on subsequent applications such as machine translation. In this paper we suggest a novel approach in which disfluency detection is integrated into the translation process. We train a CRF model to obtain a disfluen...
متن کاملA Three-stage Disfluency Classifier for Multi Party Dialogues
We present work on a three-stage system to detect and classify disfluencies in multi party dialogues. The system consists of a regular expression based module and two machine learning based modules. The results are compared to other work on multi party dialogues and we show that our system outperforms previously reported ones.
متن کاملA new model for persian multi-part words edition based on statistical machine translation
Multi-part words in English language are hyphenated and hyphen is used to separate different parts. Persian language consists of multi-part words as well. Based on Persian morphology, half-space character is needed to separate parts of multi-part words where in many cases people incorrectly use space character instead of half-space character. This common incorrectly use of space leads to some s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015